
More than a century after the rediscovery of Mendel, 
the genetic basis of complex and quantitative traits resists 
generalization. Basic questions remain unanswered, 
including the number of loci that underlie variation in 
heritable phenotypes, the distribution of their effect sizes, 
their molecular natures and mechanisms of action and 
interaction, and their dependence on environmental 
variables. These questions are at the centre of pressing 
issues in medical and agricultural genetics, as well as in 
basic evolutionary biology, in which the outstanding 
unresolved question concerns the forces that create, 
maintain and sort heritable phenotypic variation. Now, 
an emerging approach, genetic mapping of genome-wide 
gene expression (BOX 1), is beginning to provide the req-
uisite empirical data to address these questions. Since the 
first empirical linkage study of global transcript levels 
was published in 2002 (REF. 1), many general principles 
have been established and represent solid ground on 
which further work can build.

Although small-scale studies of the genetics of gene 
expression have a long and rich history (BOX 2), modern 
large-scale studies owe their existence to the develop-
ment of microarray technology in the mid-1990s. 
Microarrays were first applied to the study of genetic 
variation in 2000. They revealed that gene expression 
differs between strains in both yeast and mice2,3 and 
that such differences segregate in crosses4,5. Subsequent 
studies documented abundant heritable variation in 
gene expression in Drosophila melanogaster 6 and kil-
lifish7. By the time Jansen and Nap8 proposed genetic 
mapping of genome-wide gene expression, such work 
was well underway in several research groups, and the 
first empirical study mapping global gene expression in a 
yeast cross appeared early the following year1. Since then, 
further studies have documented heritable variation in 
genome-wide gene expression in more than a dozen 
species and have mapped the loci for many expression 

traits in yeast, mice, maize, humans, rats, Eucalyptus 
and Arabidopsis thaliana9–21. This diversity of model 
systems promises to reveal important connections 
between genome-wide gene expression and features 
of population biology — population sizes, breeding 
systems, demographic histories and patterns of natural 
selection. Differences can already be seen among spe-
cies: most species show ubiquitous heritable variation 
in expression, whereas the malarial parasite Plasmodium 
falciparum shows remarkably little22.

The abundance of a transcript is a quantitative trait 
and, like all such traits, its inheritance can be described 
using the classical methods of biometrical genetics and its 
genetic basis can be discovered using linkage and asso-
ciation mapping. However, transcript abundance is in 
many ways an extraordinary phenotype, with special 
attributes that confer particular importance on an 
understanding of its genetics. The primary transforma-
tive potential of genome-wide gene expression genetics 
is the sheer number of traits — thousands — that can 
be assayed simultaneously. Whereas studies of one or a 
few traits offer only anecdotal examples of the underly-
ing genetic architectures, studying thousands of traits 
allows a detailed description of the distribution over the 
landscape of all possible architectures. Individual traits 
are typically preselected on the basis of their phenotypic 
divergence or biological interest, whereas genome-wide 
expression studies provide data on a large and unbiased 
set of traits. The radical increase in the number of 
traits accessible to study has raised new challenges to 
analysis and interpretation, and genome-wide genetic 
mapping of gene expression has consequently become 
a central proving ground for new statistical genetics 
techniques23.

Another special feature of transcript abundance as 
a phenotype is that it represents the phenotype most 
immediately connected to DNA sequence variation 
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Complex and quantitative 
traits
Phenotypes that are shaped by 
multiple and possibly 
interacting genetic and 
environmental factors. 
Quantitative traits (as 
distinguished from discrete 
traits) are measured on 
continuous scales.

Effect size
The magnitude of contribution 
of a locus to variation in a 
phenotype.

Genetics of global gene expression
Matthew V. Rockman and Leonid Kruglyak

Abstract | A new field of genetic analysis of global gene expression has emerged in recent 
years, driven by the realization that traditional techniques of linkage and association 
analysis can be applied to thousands of transcript levels measured by microarrays. 
Genetic dissection of transcript abundance has shed light on the architecture of 
quantitative traits, provided a new approach for connecting DNA sequence variation with 
phenotypic variation, and improved our understanding of transcriptional regulation and 
regulatory variation.
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Box 1 | Genetics of global gene expression: a primer

A study of the genetics of global gene expression begins 
with a mapping population. Several choices are available 
and have been used: progeny from a cross between two 
parent strains, recombinant inbred lines, collections of 
pedigrees and samples of unrelated individuals. The study 
population is then genotyped for a set of polymorphic 
markers that cover the genome. RNA is extracted from 
each individual or strain, and the abundance of each 
transcript is measured, typically by hybridization to 
microarrays (panel a illustrates the experimental design for 
a cross between two yeast strains1). High levels of 
measurement replication are built into the design, because 
each allele at each QTL will be present in a large number of 
samples; the effect of the QTL on gene expression will 
therefore be measured many times. The resulting data set is 
then analysed to find genetic loci that affect transcript 
abundance. The simple approach is to treat the abundance 
of each transcript as a separate quantitative trait, and to 
carry out conventional linkage or association analysis with 
all the markers tested either individually or using 
multipoint methods. Panel b shows how, at a given 
genomic location, the samples are separated according to 
the inherited marker alleles, and linkage (or association) is 
declared if the groups differ significantly in expression 
level (in this case of the gene at the centre of the small 
array section). An example of an actual linkage from a yeast 
cross is shown in panel c. Because millions of statistical 
tests are carried out (thousands of transcripts are each 
tested against hundreds or thousands of markers in linkage 
studies and up to a million markers in association studies), 
careful control of false positives through multiple testing 
correction is essential. Empirical significance levels 
obtained through permutation tests40,96 should be used 
whenever possible to account for the complex correlations 
in the data. Approaches that are based on the false-
discovery rate (FDR) are very useful97. Methods are available 
to search for multiple loci that affect a given trait either 
additively or through interactions, but even greater 
statistical care is required23,38,39,98. Methods that use 
dimensional reduction (for example, clustering or principal 
component analysis) can lower the number of tests and can 
potentially improve mapping power by combining multiple 
transcripts that behave similarly into single traits9,99.

Depending on the study design and sample size, loci are 
identified for anywhere from a few transcripts to thousands 
of transcripts, with up to half of all transcripts showing 
linkage in some studies29. Following locus identification, 
the studies take several paths. The genetic architectures of 
the traits can be assessed by examining heritabilities, 
detection rates, numbers of loci identified and their effect 
sizes29. Loci can be classified according to whether they 
affect transcripts encoded at the same genomic location or 
elsewhere in the genome, and whether they affect many 
transcripts or few1,10. Bioinformatic approaches can be used 
to identify functional relationships among the transcripts 
affected by common loci and to investigate the structure of 
the underlying regulatory networks1,13,76,100,101. Finally, the 
causative polymorphisms responsible for variation in 
transcript abundance can be pursued using molecular 
genetics tools (panel d). (B@marker, R@marker, the allele 
carried by the segregant at the marker is the BY allele (B) 
or the RM allele (R), respectively; chr, chromosome; 
seg, segregants.)

Panel b and c reproduced with permission from REF. 1 © (2002) 
American Association for the Advancement of Sciences.
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Recombinant inbred lines
Panels of genetically mosaic 
but homozygous strains 
generated by crossing parental 
strains and inbreeding the 
progeny.

False-discovery rate
The fraction of results declared 
significant at a given threshold 
that are expected to be false 
positives.

Dimensional reduction
A class of mathematical 
techniques for summarizing the 
main characteristics of 
multivariate data with fewer 
variables.

QTL
Quantitative trait locus; a 
region of the genome that 
contributes to variation in a 
quantitative trait.

Beavis effect
A statistical artefact that is due 
to the deviation of estimates 
from true values by random 
error. In a mapping 
experiment, the loci that are 
deemed significant are 
enriched for those in which the 
estimated effects benefit from 
random error that happens to 
fall in the right direction. 
Therefore, significant QTLs are 
disproportionately those in 
which the effect sizes are 
inflated by chance.

— the road from genotype to phenotype runs through 
gene expression. Regulatory sequence variation, includ-
ing both variation in a regulatory region of a gene that 
affects its own expression and variation in the coding 
region of a gene that affects expression of other genes, is 
probably the main mediator of phenotypic divergence 
in evolution24–27. Moreover, the intermediate position 
of gene expression between genotype and organismal 
phenotype makes it ideally suited to serve as a bridge 
between the two in mapping studies. Genetic correla-
tions between expression phenotypes and organismal 
phenotypes point to the molecular pathways that under-
lie the organismal phenotypes, whereas colocalization of  
QTLs for expression and organismal phenotypes speeds 
up the identification of causal mutations. Gene expres-
sion also provides a universal subphenotype for complex 
and heterogeneous organismal phenotypes10.

In this review, we first discuss what the genetics of 
global gene expression has taught us about the genetic 
architecture of quantitative traits. We then describe the 
features of the two types of regulatory sequence varia-
tion that underlie differences in gene expression: local 
variation, which maps close to the physical location of 
the affected gene, and distant variation, which maps else-
where in the genome. We quantify the prevalence of each 
type, and delineate the difference between the local and 
distant distinction, which is based on location, and the 
mechanistic distinctions (such as cis-acting  and trans-
acting, or cis-regulatory and protein-coding), which are 
based on the function altered by the variants. Having 
discussed the insights provided by studies of global gene 
expression, we look at the future of the genetics of global 
molecular phenotypes.

Genetic complexity of transcript levels
Historically, most quantitative phenotypes have proved 
to be genetically complex, explicable only by multiple 
underlying loci and possibly interactions among the 

loci and with environmental variables. A key find-
ing from multiple studies of the genetics of gene 
expression in different species is that complex 
inheritance is also consistently observed for the thou-
sands of transcript-level traits. Despite their close 
connection to DNA sequence, transcript abundances 
exhibit substantial genetic complexity.

QTL number and effect size. Two important and seem-
ingly simple questions are: how many QTLs underlie a 
quantitative trait, and how much of the heritable varia-
tion in the trait does each QTL explain? These questions 
turn out to be surprisingly difficult to answer because of 
the following methodological problem. Unless a study 
samples a very large number of individuals, which has 
not been practical when the phenotype is genome-wide 
gene expression, only QTLs with the largest effect on the 
trait can be detected. Therefore, the observed number 
of loci is usually an extreme underestimate of the actual 
number, and the observed effect sizes represent the high 
end of the overall distribution of effect sizes. Moreover, 
a common statistical artefact, known as the Beavis effect, 
causes the overestimation of effect sizes of the detected 
loci28. Nevertheless, useful estimates can be made.

The genetic architecture of most expression traits 
involves multiple QTLs, and most of these QTLs explain 
a minority of trait variation. Because all mapping studies 
until now have detected only a single locus for most traits, 
this conclusion is based primarily on what has not been 
detected. The argument runs as follows. For a trait with 
measurable heritability, it is straightforward to calculate 
the probability that a QTL that explains a certain fraction 
of trait variation will be detected in a study with a given 
sample size. For a single trait, a QTL is either detected or 
not, but when many traits are examined simultaneously, 
as in the case of genome-wide expression, we can ask 
whether the fraction with detected QTLs is as expected 
from the detection probability. If the detected fraction is 

Box 2 | Foundational work in the genetics of natural variation in gene expression

Dramatic recent progress in understanding genetic variation in gene expression builds on a rich history, dating at least to 
Haldane’s prescient treatment of variation in the timing of gene activity102. Decades before the discovery of the molecular 
gene, Haldane recognized that genetic variation in a gene’s activity could be due to variation in the gene itself or to 
variation at an unlinked locus. Thinking in terms of physiological genetics, he pointed to membrane-spanning ion channels 
as candidate sites for mutations that could act on other genes in trans by altering cellular pH.

The earliest genetic mapping of natural variation in gene expression appeared immediately after Jacob and Monod103 
introduced a mechanism for gene regulation. Schwartz104 showed that variation in the time of activity of an esterase gene 
in maize depends on variation that is tightly linked to the structural locus. Linkage disequilibrium between the regulatory 
locus and electrophoretically distinguishable alleles of the enzyme showed that the regulatory variation acted in cis.

Jacob and Monod’s model inspired much speculation about variation in gene regulation and its importance to 
evolution105,106, but empirical research really took off only after King and Wilson’s analysis refocused attention on the 
subject24. Using amylase genes as models, drosophilists documented distant linking, trans-acting regulatory variation 
affecting spatial regulation107,108, heritable variation in enzyme inducibility109 and fitness differences attributable to 
regulatory variation110. Parallel results for other enzymes and taxa rapidly accumulated111–113.

Genetic analysis of gene expression variation entered a new era with the precocious introduction of genomic 
approaches by Damerval et al.61 Scoring spot intensities on two-dimensional gels as measures of abundance of 72 proteins 
in the F2 progeny of a maize line cross, Damerval et al. mapped QTLs that underlie the observed variation, including 
epistatic interactions among the loci. Because the two-dimensional gels allow allele-specific protein quantification, the 
study could distinguish between cis-acting and trans-acting variation. In the past several years, genome-wide genetic 
analyses of gene expression have far surpassed Damerval et al. in the number of traits examined and in the number and 
precision of the QTLs discovered, but much of the conceptual model for these studies is present in their classic paper.
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Heritability
The fraction of total phenotypic 
variance that is attributable to 
additive genetic effects. 
Estimators with different 
technical definitions and 
biological meanings abound. 
This is not an inherent property 
of a trait; heritability depends 
on the nature of the genetic 
sample (for example, intercross, 
inbred lines, twins and random 
populations) and the space of 
environments surveyed.

Transgressive segregation
A distribution of trait values for 
a segregating population that 
extends significantly beyond 
the range defined by the 
progenitor strains.

lower, typical QTLs must be weaker than assumed in the 
calculation, and because no individual QTL can explain 
most of the genetic variation, there must be multiple 
QTLs. Such arguments have been used to estimate that 
in a yeast cross only 3% of expression traits are consist-
ent with single-locus inheritance, that most traits require 
more than two additive QTLs, and that segregation of 
many traits can only be explained by very complex genet-
ics29. In an F2 cross of 111 mice, QTLs were detected for 
only 27% of genes with significant genetic differences in 
expression, implying considerable genetic complexity 
given the study’s high power to detect QTLs for traits 
with relatively simple inheritance10. A combination of 
genetic complexity and low statistical power probably 
explains the low detection rates in the human studies 
carried out so far16–19.

Direct evidence of genetic complexity comes from 
detecting multiple QTLs for at least some expression 
traits. Moreover, even the detected QTLs typically 
explain only a minority of trait variation. In yeast, the 
median phenotypic effect of a detected QTL was 27% of 
genetic (heritable) variance explained, and only 23% 
of traits had a QTL that explained >50% of genetic 
variance29 (FIG. 1). Similarly, in mice10, mapped QTLs 
explained on average 25% of the variance in expression 
of the corresponding genes. In humans, effect-size 

estimates averaging 27–29% have been reported for 
loci near the affected genes17,19. Therefore, even the 
strongest QTLs that underlie variation in gene expres-
sion typically explain a quarter or less of the variation. 
Nevertheless, routine observation of QTLs that explain 
a substantial fraction of phenotypic variance contradicts 
the infinitesimal theory of Fisher30, in which quantitative 
traits are determined by a very large number of loci with 
very small effects. QTLs with appreciable effects are also 
reported in studies of non-expression phenotypes31 and 
cannot all be explained away by the Beavis effect. The 
empirical results are better described by the exponential 
model developed by Orr32, in which large-effect muta-
tions represent the expected initial steps in adaptation, 
as discussed by Farrall31 and by Barton and Keightley33; 
one implication is that strong QTLs might be observed 
because of natural selection, and not despite it.

The many forms of genetic complexity. The correspond-
ence between genes, alleles and environments on the one 
hand, and phenotypes on the other, can be complex in 
many ways, with a parallel proliferation in terminology. 
Studies of the genetics of global gene expression have illu-
minated the prevalence of each type of complexity (FIG. 2). 
In yeast, most heritable transcripts show transgressive 
segregation29, which is consistent with the accumulation 

Figure 1 | Most gene expression traits are affected by multiple loci. Each bar represents the fraction of QTLs that 
explain a percentage of genetic variance in the range on the x axis. For each trait with significant linkage(s), only the 
single most significant QTL is included. Data are derived from the first table in REF. 29. The panels below the plot show 
examples of QTLs that explain, from left to right, low, average and high percentages of genetic variance. In each panel, 
the left-most column shows the relative expression of the corresponding gene in all 112 segregants (seg), the next two 
columns show the expression in replicates of the two parent strains, and the last two columns show the expression in 
the segregants that inherit the QTL allele from the first and second parent strains.
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Directional genetics
A distribution of trait values for 
a segregating population that 
is significantly concentrated 
within the range defined by the 
progenitor strains.

Non-additivity
A property of alleles at a locus, 
such that the trait value of 
heterozygous individuals is not 
the average of the trait values 
of homozygotes for each allele.

Genetic interaction
A property of alleles at 
different loci, such that their 
combined effect on a 
phenotype deviates from the 
sum of their individual effects 
(this is often called epistasis).

Allelic heterogeneity
The phenomenon in which a 
genetically diverse population 
harbours many different alleles 
at a QTL.

Gene-by-environment 
interaction
The effect of a locus on a trait 
depends on the environment, 
and the effect of the 
environment on the trait 
depends on the locus.

Pleiotropy
The capacity of a single 
mutation to affect multiple 
traits.

in the parental strains of a large number of alleles of 
modest effect. A smaller fraction of traits show directional 
genetics29, which is suggestive of directional selection that 
drives the phenotypic divergence of the parental strains. 
Several studies34–37 have investigated the prevalence of 
non-additivity, where gene expression in F1 heterozygotes 
differs from the mid-value of the homozygous parental 
strains. Questions of additivity depend on the measure-
ment scale — values can be additive on some scales but 
non-additive on others. Moreover, microarrays yield 
linear measures of gene expression only within certain 
ranges. Despite these caveats, experimental follow-up 
has validated the finding from microarrays that non-
additivity is common in D. melanogaster, A. thaliana 
and maize, and that its extreme forms, overdominance 
and underdominance, are not rare34–37.

Genetic interactions have been observed in several 
studies, and a systematic scan for interacting QTLs 
found non-additive interactions among loci for roughly 
half of all transcripts38. The detection of interacting 
QTLs will be aided by methodological advances39, 
as well as by future studies with much larger sample 
sizes40. The detection of population association at only 
a minority of loci previously identified by linkage in 
families18 indicates that many individual QTLs which 
underlie expression traits display considerable allelic 
heterogeneity. The effects of genetic variation on gene 
expression are condition-dependent, and such gene-
by-environment interactions have been documented in 
comparisons of inbred strains across conditions6,41–43. 
In multicellular organisms, the local conditions differ 
in each tissue, and genetic variation with a cell-type-
dependent influence on gene expression represents a 
special case of gene-by-environment interaction. Studies 
of gene expression in mouse brain13, haematopoietic 

stem cells12, fat44 and liver10,44, and in rat kidney and 
fat11, have found that the genetic basis of variation in a 
gene’s expression is sometimes shared between different 
tissues but is often unique to each tissue45. Studies in 
flies and mice have also shown extensive sex depend-
ence of gene expression6,21. Finally, the existence of loci 
that affect the expression of many genes (see below), 
or individual genes across many conditions, establishes 
pleiotropy as a common feature of the genetics of gene 
expression.

Local versus distant QTLs
Transcript levels differ from other phenotypes in that 
each transcript has a corresponding encoding gene with 
a known position in the genome. Therefore, because 
mapping studies reveal the locations of QTLs, an expres-
sion QTL can be immediately classified as ‘local’ (near 
the genomic location of the gene encoding the tran-
script) or ‘distant’ (elsewhere in the genome). Because 
mapping studies do not reveal the underlying molecular 
nature of QTLs, we prefer the strictly positional terms 
local and distant to the commonly used terms cis- and 
trans-linking, which have implicit mechanistic connota-
tions. In fact, both local and distant QTLs can include 
polymorphisms in cis-acting and trans-acting factors, 
under the classic definition of the terms46–48. The casual 
conflation of different usages of cis and trans has resulted 
in a significant amount of confusion. Some uses describe 
the pattern of co-inheritance of trait and locus (-linking), 
whereas others describe the mechanism of action of a 
locus with respect to a trait (-acting). Neither distinction 
captures any information about the molecular nature of 
the loci, that is, whether the mutation alters a protein 
or a functional RNA or acts at the level of DNA in 
cis-regulation.

Figure 2 | Types of complex inheritance of transcript levels. a | Directional genetics with most segregants (seg) 
showing expression between the two parent values. b | Transgressive segregation with most segregants showing 
expression outside the two parent values. c | Genetic interaction with the segregant average expression differing from the 
mid-parent mean expression. In each panel, the first column shows the relative expression of the corresponding gene in all 
112 segregants, and the next two columns show the expression in replicates of the two parent strains. Modified with 
permission from REF. 29 © (2005) National Academy of Sciences, USA.
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Some arbitrariness is introduced by the definition 
of a marker being local or distant. Local is most com-
monly defined as being within some physical distance 
of a chosen point in the gene. Statistical arguments can 
be used to choose this distance so that the probability 
that a linked marker will fall that close to the gene by 
chance is small1. More sophisticated definitions can 
include considerations of whether the gene is close to 
the linkage peak: for example, does it fall within the 
confidence region for the linkage localization49?

Local linkage can arise as a result of several sce-
narios (FIG. 3a). First, the linkage might be due to a 
polymorphism in a nearby gene that regulates the 
gene for which expression is being measured. This can 
occur either by chance or owing to a nonrandom close 
location in the genome of regulators and their targets. 
Statistical arguments can be used to ensure that there 
is only a small probability of a chance occurrence. 
Second, and more typically, local linkage will be due 
to a polymorphism (or polymorphisms) in the gene 
itself. Such polymorphisms might act in cis by altering 
classic cis-acting regulatory elements and consequently 
changing transcription; they could also act in cis post-
transcriptionally, by altering message stability or 
by altering sites that are targets for messenger RNA 
processing and decay. Polymorphisms in the gene 
might also act in trans (that is, affecting the expression 
of both alleles in a heterozygous diploid) by triggering 

feedback loops either directly through changes in the 
coding sequence of an autoregulatory gene or indirectly 
by changing the coding sequence or message levels that 
are sensed and responded to by the cell. Classic cis/trans 
tests of allele-specific expression in a diploid hybrid can 
be used to distinguish among these possibilities49,50.

Distant regulatory variation typically acts in trans 
through the downstream effects of coding or cis-regulatory 
polymorphisms in different types of genes, with tran-
scription factors being the most obvious example. But 
distant regulation can occur with many degrees of 
indirectness, including non-cell-autonomous effects 
and beyond (for example, a polymorphism that influ-
ences diet choice would affect the expression of genes 
that respond to specific nutrients and exogenous mol-
ecules). Moreover, the existence of regulatory elements 
that are located far from the genes they regulate51–53 
means that distant loci can act in cis.

Even more complications arise from DNA elements 
that act directly to regulate distant genes through 
physical contact; interchromosomal interactions can 
result in ‘cis-regulatory’ DNA that acts on a different 
chromosome54. A genetically diffuse version of this phe-
nomenon is due to variation in the total genome-wide 
number of binding motifs for a transcription factor; the 
binding of the factor to non-functional ‘cis-regulatory’ 
DNA titrates the proteins out of the nucleoplasm, 
decreasing their availability with effects in trans55.

Figure 3 | Local and distant regulatory variation. a | Local regulatory variation. From left to right, regulation by a 
neighbouring gene, cis-regulatory variation, autoregulatory variation and feedback variation. The red star denotes 
the regulatory variant, the bar with arrow denotes the coding region of the gene (dark green), the expression of 
which is affected by the variant, and the circle denotes the protein product of the gene. The blue rectangle to the 
left of the coding region represents an upstream regulatory element. b | Distant regulatory variation. Arrows are 
drawn from a gene with regulatory variation to the gene or genes it regulates. On the left, each regulatory variant 
affects expression of a different gene. On the right, a regulatory variant affects expression of many genes. Such a 
variant would show up as a linkage hot spot (FIG. 4).
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Multiple testing problem
The number of false-positive 
results increases when multiple 
statistical tests are carried out, 
requiring more stringent 
thresholds to reach the same 
level of significance.

Linkage disequilibrium
The nonrandom association of 
alleles at different loci in a 
population.

QTN
Quantitative trait nucleotide; 
the actual sequence 
polymorphism responsible for 
variation in a quantitative trait.

Empirical results: local regulatory variation. As many 
as 25% of all gene expression traits in a yeast cross are 
affected by local regulatory variation49. Local linkages 
have been observed to account for anywhere from 
25% (for example, see REF. 9) to 100% (for example, see 
REF. 19) of detected loci. This range is primarily a func-
tion of sample size, as local linkages on average explain 
more trait variance than distant linkages, and are there-
fore more likely to be detected in smaller studies10,56. In 
addition, the power to detect local linkages is higher 
than it is for distant linkages because the multiple testing 
problem is less severe. In both cases thousands of tran-
scripts are tested for linkage, but in the case of distant 
linkages many markers that cover the entire genome are 
tested for linkage to each transcript, whereas in the case 
of local linkage only markers near the gene encoding the 
transcript need to be tested. The difference is especially 
acute for association studies, where up to a million 
markers are used to cover the genome18,19.

Several types of polymorphism in different locations, 
in or near a gene, and acting through different molecu-
lar mechanisms, can cause local variation. It seems that 
most but not all local regulatory variation acts in cis, 
with perhaps a quarter to a third acting in trans49,50. 
Cis-acting local variation can result from differential 
transcription, splicing, mRNA decay or even gene copy 
number; each phenomenon was observed in a mouse 
cross10. A variant in the AMN1 gene in Saccharomyces 

cerevisiae provides an example of a local but trans-acting 
effect of a coding polymorphism on its corresponding 
transcript49.

Because transcript levels with local linkages are most 
likely affected by regulatory variation in the correspond-
ing gene, each local linkage comes with an immediate 
candidate gene, removing the need for cumbersome 
positional approaches to gene identification. However, 
finding functional polymorphisms is still not straight-
forward, as genes are likely to contain multiple polymor-
phisms, and both coding and regulatory regions need to 
be examined. Linkage and linkage disequilibrium between 
nearby polymorphisms further complicate the identifi-
cation of functional polymorphisms, and the effect on 
expression might be due to haplotypes that combine 
multiple alleles. Therefore, the path from local QTLs to 
QTNs (quantitative trait nucleotides) remains tortuous 
and dependent on targeted experiments.

A recent and unexpected finding from A. thaliana 
is the ‘neighbourhood effect’, whereby a large number 
of physically clustered genes show linkage to a local 
QTL14. These hot spots of local linkage might be due 
to tight clustering of functionally related genes, or to 
coincidental colocalization of a trans-acting variant 
and its target genes, but a plausible alternative is that 
the QTLs represent mutations that alter the regional 
structure of chromatin, acting in cis to influence a large 
number of genes.

Box 3 | Units of measure influence contributions to variation in gene expression

An explicit statistical model is central to any attempt to address the relative contributions of different kinds of QTLs to 
phenotypic variation. But apart from the problem of what qualifies as significant is the problem of what units are being 
counted. We might want to count the number of gene expression traits that show each kind of genetic basis, or we 
might want to count the number of genetic loci that underlie the inferred linkages; a major source of confusion is that 
both traits and loci are often called ‘genes’. In other contexts, the quantity of interest might be the number of linkages, 
in which case a single genetic locus could count multiple times if it pleiotropically affects multiple gene expression 
traits. Because linkages are often called QTLs, counts of linkages and loci are readily confused. Yet another unit of 
measure is the fraction of phenotypic variance that is attributable to a particular type of genetic variation. Most studies 
describe results for only some of these units, hindering comparisons among studies. Interpretation also depends on 
whether we are measuring trait-by-trait averages or genome-wide global quantities. For example, for each gene 
expression trait, most loci will be distant, but on a genome-wide scale, the majority of loci might be local9, owing to the 
pleiotropic effects of distant loci.

Another variable among studies is the phenotypic space over which the questions are asked. The sampling properties of 
networks are underexplored114 but relevant to claims about the genetic architecture of gene expression, as counts of traits, 
loci, linkages and variances have different ranges and scales. For example, the number of loci segregating in a cross is 
finite, whereas the number of possible traits (and therefore linkages) is technically infinite115. The expression of each gene 
is a suite of traits distributed over a space of environments, continuous in some dimensions, such as temperature, and 
discontinuous in others, such as cell type. At present we know very little about how the counts of loci (or linkages or 
variances) scale with the extent of phenotypic state space explored. However, in the case of local versus distant loci there 
is a clear bias. The maximum number of local loci discovered is limited by the space of traits examined because current 
genome-wide linkage methods are unable to resolve multiple locally linking loci for a single trait. As the number of traits 
examined increases, the estimated genome-wide number of local loci might increase linearly, whereas the number of 
distant loci will increase less than linearly as particular pleiotropic loci are discovered again and again. One consequence is 
that estimated ratios of local versus distant loci are biased by the number of sampled traits. For example, Morley et al.17 
sampled just 3,554 human gene expression traits; if these traits were downstream of the major pleiotropic trans-acting 
loci, then most of the genome’s distant QTLs will have been identified, whereas, at best, less than 20% of transcripts 
(assuming 20,000 genes) were examined for local linkage.

A final variable is the nature of the genetic sample, that is, the genotypic space surveyed. So far, most studies have 
involved simple line crosses in which two alleles at most are segregating at each locus. Several more recent studies have 
used association methods in larger population samples, where more alleles could be segregating. If the loci that underlie 
different kinds of linkages have different allele frequency distributions116, different kinds of sample will yield different 
answers to questions about their prevalences and contributions to variation117.
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In parallel with mapping studies, allele-specific meas-
urement techniques, which pinpoint genes that have 
variable transcription due to cis-acting allelic variation, 
have been addressing the same questions. Five assay 
techniques — allele-specific quantitative PCR49,50,57–59, 
measurement of polymerase loading60, quantitative two-
dimensional protein gels61,62, allele-specific expression 
arrays63–65 and experimental reporter assays66–69 — have 
all documented abundant cis-acting genetic variation 
(see REF. 70 for a review of these techniques). Only the 
array-based methods approach genome-wide scope, 
and the results are striking and consistent. In each case 
a large fraction of variable traits exhibit cis-acting varia-
tion. Pant et al.65, by measuring allele-specific expression 
of 1,389 genes in human white blood cells, found that 
more than half of the genes exhibited cis-acting heterozy-
gosity in a sample of 12 individuals, and that on average 
individuals exhibit cis-acting heterozygosity at 25% of the 
genes. This high number is compatible with an earlier 
extrapolation from a survey of reporter assays69. Reporter 
assays have allowed the dissection of cis-regulatory hap-
lotypes, and have established that the single local QTL 
that is found for a gene by linkage or association might 
represent haplotypes that differ by many variants with 
individual and interacting effects on expression71,72.

Empirical results: distant regulatory variation. In studies 
with larger sample sizes, most transcripts link to loci dis-
tant from the genomic locations of the genes that encode 
the corresponding transcripts. For example, Yvert et al.9 
found that 578 of 2,294 expression traits show linkage 
to the genomic regions at which they are transcribed, 
whereas 1,716 link to distant loci. An estimated 100–200 
loci accounted for these distant linkages. Because a partic-
ular locus can influence many distant genes (FIG. 3b), the 
number of distant linkages is often much higher than 
the number of local linkages, even though, as in this 
case, the number of loci that account for local linkages is 
much higher than the number of distant loci (BOX 3).

Because the resolution of the linkages tends to be rela-
tively low, it is difficult to estimate the number of loci that 
affect gene expression of distant transcripts in any given 
study, as well as the number of transcripts affected by a 
typical locus. However, one common feature observed in 
multiple studies is the presence of hot spots: individual 
loci that affect large numbers of transcripts1,10. Hot spots 
are usually defined as those loci for which the number of 
linked or associated transcripts statistically significantly 
exceeds that expected if such transcripts were randomly 
distributed along the genetic map1 (FIG. 4). Care must be 
taken to correct for the fact that many loci are examined, 
and for correlation in expression levels of different genes 
that might cause apparent hot spots in the absence of 
underlying common polymorphisms73; in other words, 
a false-positive QTL for one trait will be a false positive 
for all correlated traits.

Although hot-spot QTLs are often called ‘master 
regulators’17, the QTLs themselves are simply mutations 
that segregate in populations, and their hot-spot status 
comes from the pleiotropic effects of the mutations 
rather than from any necessary regulatory function of 

the genes. A mutation in an essential structural protein 
with no regulatory role is the ultimate hot spot: a locus 
that acts in trans to reduce the expression of every gene 
to zero (by means of lethality). Of course, lethality 
is an extreme example, and in general mutations in 
genes at the top of regulatory hierarchies are promising 
candidates for hot-spot QTLs.

Finding the genes that underlie distant loci is more 
challenging than in the case of local loci. Several 
approaches might prove to be helpful. Some poly-
morphisms also affect the expression of the gene that 
contains them, with the effects on other genes being 
either pleiotropic or a direct consequence of the change 
in expression. Therefore, looking for a local linkage 
among the transcripts linking to a hot spot might lead 
directly to the causative gene. In mouse, for example, a 
local QTL influencing expression of the transcription 
factor gene Runx1 acts as a distant QTL for genes known 
to be targets of Runx1 regulation12. Combining the tran-
scripts affected by a hot spot into a single phenotype (for 
example, by clustering) can increase resolution and make 
the phenotype simpler (more monogenic) and therefore 
more amenable to recombinational fine mapping9. More 
sophisticated approaches that leverage the correlation 
structure among phenotypes — for example, by finding 
a function of multiple traits that maximizes support for 
a pleiotropic QTL — also hold promise74–77.

Because many regulatory and biochemical networks 
are well characterized, the identity and annotation of 
the transcripts that link to a hot spot can greatly assist 
candidate gene identification1. Studying gene expression 
and growth rates in Eucalyptus, Kirst et al. identified a 
suite of genes of which the expression explained much of 
the variance in tree growth15. This set of genes included 
nearly the entire lignin biosynthesis network, and their 
expression traits share a set of common QTLs. Although 

Figure 4 | Hot spots of distant regulatory variation. 
The number of linkages is plotted against genome location. 
The yeast genome has been divided into 611 bins of 20 kb, 
shown in chromosomal order on the x axis. The number of 
distinct transcripts linked to markers in each bin is shown 
by bar height. Local linkages are excluded. The dashed line 
shows the maximum number of linkages that would be 
expected to fall into any one bin by chance with a 
probability of >5%, corrected for the number of bins. Bins 
with bar heights above this line represent hot spots.
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a Eucalyptus genome sequence is unavailable, Kirst et al. 
mapped some of the lignin biosynthesis genes and found 
that one, S-adenosylmethionine synthase, coincides with 
the major QTL for both growth and the suite of lignin 
biosynthesis genes.

A natural assumption is that distant linkages that 
underlie gene expression variation are due to polymor-
phisms in transcription factors, the archetypal trans-acting 
transcriptional regulators. The hypothesis is difficult to 
test without mapping QTLs to the resolution of single 
genes, but genome-wide expression mapping provides 
sufficient data to allow confident inferences. In a yeast 
cross, known yeast transcription factors were not over-
represented near the markers that defined QTLs for 
1,716 distant linkages, and an analysis of Gene Ontology 
categories indicated that QTLs are not enriched for any 
particular class of molecular function9 (these questions 
are revisited in REF. 77).

The future
Much has been learned about the genetics of global 
gene expression in the past few years. However, the 
field is young and much remains to be discovered. So 
far, most of the conclusions are based on the identifi-
cation of genetic loci that have not been resolved into 
individual genes and polymorphisms that affect expres-
sion. Although a few examples of detailed molecular 
characterization of expression QTLs exist (for example, 
see REF. 9), many more are needed for a clear under-
standing of the types of allele that are responsible for 
genetic differences in gene expression, and of the loca-
tion and nature of the causative polymorphisms. Such 
high-throughput identification and characterization of 
polymorphisms that affect expression remains a chal-
lenge. Promising research directions include greatly 
increasing sample sizes of studies by taking advantage 
of high-throughput techniques for genotyping78,79 and 

expression profiling, as well as developing techniques for 
rapid and comprehensive mutation detection80, and for 
exchanging alleles between strains and directly testing 
the effects on expression81,82.

Two other major directions involve expanding the 
genetic samples and the set of global molecular pheno-
types. So far, most studies have used linkage analysis in 
experimental crosses, recombinant inbred lines or refer-
ence human pedigrees. It is important to extend studies to 
population samples in order to ask questions about allele 
frequencies and selective forces83. In those cases in which 
gene expression variation has been mapped to the level 
of nucleotides, population genetic analysis has revealed 
an important role for natural selection in shaping and 
maintaining variation84–93. Population studies have 
begun to be carried out, but until now have been lim-
ited to humans and have not yet used global expression 
assays18,19. As global expression analysis merges with pop-
ulation genomics, we anticipate a fuller understanding 
of the causes of heritable variation33,83.

The expansion of global molecular phenotyping 
includes measuring gene expression in multiple envi-
ronments, developmental stages, and cell and tissue 
types. Emerging technologies also open up the ability to 
examine other molecular components of cells, includ-
ing proteins62 and metabolites94. Global phenotyping 
can also include characterizing cellular properties and 
responses to large classes of external perturbations, 
such as small molecules95. Where possible, multiple 
classes of global phenotypes should be collected for 
the same study samples, so that connections might be 
drawn between the multiple levels of phenotypic infor-
mation, with the goal of achieving an understanding of 
how changes at the DNA sequence level are translated 
into changes at the level of organismal phenotypes 
through changes in the intermediates. Clearly, exciting 
times lie ahead.
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