
tion using complexes formed with 32P-labeled
mRNA and found that the mRNA segregated
predominantly with 40S subunits (fig. S8), con-
sistent with the previously reported dependence
of mRNA dissociation on additional initiation
factors (23). Additionally, no cleavage of mRNA
was observed during Dom34:Hbs1-mediated pro-
cesses (fig. S9), consistent with an earlier report (8).

Because Dom34:Hbs1-driven subunit disso-
ciation and peptidyl-tRNA release are correlated
events (Fig. 3, A and B), we sought to determine
their order by measuring the rate constants of the
two reactions using ribosome complexes con-
taining either 32P-labeled mRNA or 35S-Met–
labeled peptidyl-tRNA (Fig. 3C). The observed
rate constants for the disappearance of 80S ribo-
somes in a native gel were closely matched
(~0.15 min−1) when either the labeled mRNA or
peptidyl-tRNA was monitored. These data indi-
cate that subunit dissociation and peptidyl-tRNA
formation by Dom34:Hbs1 are tightly coupled to
one another, with one likely serving as the rate-
limiting step for the other [e.g., (24)].

If subunit dissociation occurs first, it seemed
possible that an intermediate product might be
generated in which subunits have dissociated but
peptidyl-tRNAhas not yet departed (i.e., peptidyl-
tRNA:40S subunit conjugates). In a comparison of
Dom34:Hbs1 activity on an initiation-like ribo-
some complex (carrying initiator Met-tRNAiMet in
the P site) and on an elongated ribosome complex
(carryingMet-Phe-tRNAPhe in the P site), freeMet-
Phe-tRNAPhe was the predominant product from
the Dom34:Hbs1-treated elongated ribosome com-
plex, whereas Met-tRNAiMet–bound 40S subunit
was the predominant product from the Dom34:
Hbs1-treated initiation complexes (Fig. 3D and fig.
S10A). The appearance of a Met-tRNAiMet–bound
40S complex suggests that subunit separation can
take place independently of peptidyl-tRNA release.
To confirm that the observedMet-tRNAiMet–bound
40S complex represented an authentic stable product
of the Dom34:Hbs1-catalyzed reaction, rather
than reassociation of Met-tRNAiMet with ribo-
somes after initial dissociation, we repeated the
Dom34:Hbs1-catalyzed reaction in the presence
of a large excess of unlabeled Met-tRNAiMet and
found that the chase had no effect on the reaction
products (fig. S10B). These data are broadly con-
sistent with the previously reported high affinity
of 40S subunits for Met-tRNAiMet (25) and show
that the Dom34:Hbs1 complex initially promotes
subunit dissociation and that peptidyl-tRNA dis-
sociation typically follows.

Given the structural similarities betweenDom34:
Hbs1 and eRF1:eRF3, we wondered whether the
canonical eukaryotic release factors might also
promote subunit separation, independent of pep-
tide release, and thereby contribute to ribosome
recycling during termination. Treatment of termi-
nation complexes (with 35S-Met–labeled peptidyl-
tRNA) with catalytically inactive eRF1(AGQ):
eRF3 led to the formation of free peptidyl-tRNA in
a reaction inhibited by GDPNP. This activity was
distinguished from that promoted by Dom34:Hbs1

only by its slower rate (0.012 min−1 versus 0.21
min−1) (Fig. 4A). Like the Dom34:Hbs1-catalyzed
reaction, the eRF1(AGQ):eRF3 reaction depended
on both protein components for full activity (Fig.
4B). Lastly, we found that eRF1(AGQ):eRF3-
mediated peptidyl-tRNA release exhibited robust
codon specificity, taking place only when a stop
codon was presented in the A site (Fig. 4C).

Canonical recycling, which occurs after ter-
mination, involves subunit dissociation, andmRNA
and tRNA release, thus allowing for subsequent
reinitiation of translation. In bacteria, a special-
ized ribosome recycling factor, RRF, is central to
this GTP-dependent process (26). However, in
eukaryotes, no RRF has been identified. Our re-
sults indicate that eRF1:eRF3 and Dom34:Hbs1
directly destabilize the subunit interface to pro-
mote recycling. Although additional factors (in-
cluding translation elongation factors) appear to
promote or accelerate various aspects of recycling
in yeast and mammals (23, 27–29), our observa-
tions could explain why no true RRF homolog is
present in eukaryotes where “termination-like”
factors instead play the key role in destabilizing
the subunit interface. We further argue that Dom34:
Hbs1 acts as a specialized recycling factor on
malfunctioning ribosome complexes that, for
example, do not appropriately engage the next
factor in the translation cycle or are inherently
defective and thus unable to properly elongate (i.e.,
NRD) (6). Subsequent to Dom34:Hbs1-mediated
recycling, kinetic competition between translation
reinitiation and mRNA decay (or rRNA decay in
the case of NRD) will determine the partitioning
of defective RNAs, with the opportunities for deg-
radation accumulating with each passage through
the quality-control pathway.
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Selection at Linked Sites Shapes
Heritable Phenotypic Variation
in C. elegans
Matthew V. Rockman,1,2* Sonja S. Skrovanek,2,3 Leonid Kruglyak2,3*

Mutation generates the heritable variation that genetic drift and natural selection shape. In classical
quantitative genetic models, drift is a function of the effective population size and acts uniformly across traits,
whereas mutation and selection act trait-specifically. We identified thousands of quantitative trait loci (QTLs)
influencing transcript abundance traits in a cross of two Caenorhabditis elegans strains; although trait-specific
mutation and selection explained some of the observed pattern of QTL distribution, the pattern was better
explained by trait-independent variation in the intensity of selection on linked sites. Our results suggest that
traits in C. elegans exhibit different levels of variation less because of their own attributes than because of
differences in the effective population sizes of the genomic regions harboring their underlying loci.

Somephenotypes exhibit abundant heritable
variation and others almost none. As her-
itable variation is the raw material for

adaptation, the forces that shape its distribution
across traits are a central concern of evolutionary
genetics (1). Among wild strains of the partially
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selfing nematode Caenorhabditis elegans, tran-
script abundance traits—model quantitative phe-
notypes (2–7)—differ in their levels of heritable
variation (4, 8) and, on the basis of experimental
measurements of the rate at which mutation in-
creases their variance, they exhibit lower levels
of heritable variation than expected under neutral
mutation-drift equilibrium (4). These findings and
similar results in other species are consistent with
the prediction that trait-dependent stabilizing se-
lection should result in different levels of var-
iation among traits (3–7).

To genetically dissect the causes of different
variabilities amongC. elegans traits, we measured
transcript abundances by microarray in develop-
mentally synchronized young adult hermaphro-
dites of 208 recombinant inbred advanced intercross
lines from a cross between the laboratory strain,
N2, and a wild isolate from Hawaii, CB4856 (9).
These strains, though relatively divergent for
C. elegans, are closely related, differing at roughly
1 base pair per 900 (10). Each line was genotyped
at 1455 single-nucleotide polymorphism (SNP)
markers. Interval mapping for each of 15,888
traits identified 2309 quantitative trait loci (QTLs)
at a false discovery rate (FDR) of 5% (Fig. 1A) (11).

The majority of QTLs (65%) are local; that is,
these QTLs occur at the genomic locations of the
genes whose transcript abundances they influence
[the spatial coincidence is defined here by over-
lap between the l-lod (logarithm of the odds ratio
for linkage) QTL support interval and the gene].
Nearly a quarter of the remaining QTLs (distant
QTLs) map to three statistically robust hotspots
(11) (Fig. 1A and fig. S1). The X-linked hotspot
encompasses more than a megabase and prob-
ably contains multiple causal variants, one of
which may be the known pleiotropic mutation of
phenylalanine to valine at residue 215 in the
neuropeptide receptor npr-1 (12). Candidate genes
for the other hotspots include Y17G9B.8, a
putative component of a chromatin regulatory
complex whose transcript abundance maps
strongly to a local QTL at its position in the
hotspot on the left side of chromosome IV, and
Y105C5A.15, a putative zinc-finger transcription
factor whose transcript abundance maps locally
to a QTL at its position in the hotspot on the right
side of chromosome IV.

The global distribution of QTLs is markedly
nonuniform. Both local and distant QTLs are
strongly enriched in the arms of the chromo-
somes relative to the centers (Table 1).C. elegans
lacks heterochromatic centromeres, and the chro-
mosomes are structured in semidiscrete domains

that exhibit correlated variation in gene density,
evolutionary conservation, repeat sequence den-
sity, and recombination rate (9, 13, 14). The
chromosomal centers have high gene density and
low recombination rates, whereas chromosome

arms have lower gene density and higher recom-
bination rates. Chromosome tips have an interme-
diate gene density but effectively no recombination
(9). Under a simple mutational null model, QTL
density is expected to correlate with the density
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Fig. 1. (A) QTLs for each transcript abundance phenotype, significant at an FDR of 5%, are plotted in
rows located at the genomic positions of the transcripts. Gray bars represent 1-lod support intervals. The
diagonal includes local QTLs, those that colocalize with the transcript they affect. Three robust QTL
hotspots are indicated with arrows. (B) Local lod score is plotted for each probe at its physical position
along the chromosomes. Points in blue are significant at a 5% FDR according to a single-marker
linkage test. Points are scaled according to the fraction of variance in transcript abundance explained
by the local QTL.

Table 1. Both distant and local QTLs are overrepresented in chromosome arms relative to centers.

Domain Distant QTLs Local QTLs Genome Probes

Tip 25 (3.1%) 93 (6.2%) 7.4 Mb (7.3%) 987 (6.2%)
Arm 508 (62.5%) 935 (62.5%) 45.9 Mb (45.8%) 6049 (38.1%)
Center 277 (34.1%) 466 (31.1%) 47.0 Mb (46.9%) 8843 (55.7%)
Mitochondrial 3 (0.4%) 2 (0.1%) 0.014 Mb (0.01%) 9 (0.1%)
Total 813 1496 100.3 Mb (100%) 15888
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of potentially functional sites and hence to be
higher in chromosomal centers than in arms, con-
trary to the observed pattern. Furthermore, as QTL
detection is most favored in low-recombination
areas (15, 16), the observed pattern also runs
counter to the expected effect of mapping bias.

The chromosomal patterning of causal var-
iants is particularly pronounced for local QTLs,
which we confirmed in a focused single-marker
analysis (17), which increased detection power
over our initial genome scan. We identified 2538
transcripts affected by QTLs that are linked to
their own genomic locations at a 5% FDR (Fig.
1B). We found that 23.7% of transcripts in chro-
mosome arms and 20.1% of those in chromo-
some tips have local QTLs, compared to only
10.2% of those in chromosome centers (c22 =
495.7, P < 10−107). The chromosomal patterning
is robust to confounding by potential hybridiza-
tion artifacts, as demonstrated by analysis of only
the 7694 transcripts for which the CB4856 geno-
type is associated with higher expression than the
reference N2 genotype. The 1057 significant lo-
cal QTLs among these exhibit the same pattern of

enrichment: 20.0% of arm transcripts, 17.9% of
tip transcripts, and 9.6% of center transcripts have
significant local QTLs (c22 = 162.7, P < 10−35).

We corroborated the results of linkage map-
ping by estimating the amount of heritable phe-
notypic variation attributable to each type of
chromosomal domain, using a genome-partitioning
approach that avoids assumptions about the
number, location, and effect sizes of QTLs (11, 18).
We estimated the amount of genetic variance at-
tributable to chromosomal arms versus centers
for each of the 1191 traits that are significantly
heritable by this method (FDR = 0.05; fig. S2),
and we observed an excess of both arm-biased
and center-biased traits (fig. S3), consistent with
contributions from large-effect or spatially clus-
tered loci. A significant majority of heritable
traits are arm-biased (permutation two-tailed P =
0.0325). The arm bias remains when the effects
of local QTLs are removed by linear regression
(P ≤ 0.0025), and the pattern is not driven by the
QTL hotspots (11) (fig. S7).

Several nonexclusive models may explain
global patterns of variation in the density of func-

tional variants influencing transcript abundance
traits (1, 3–7, 19–21). In standard multivariate
quantitative genetic models, equilibrium trait

Table 2. Logistic regression models implicate mutation, stabilizing selection, and linked selection in
explaining the distribution of local linkages. LRT: likelihood ratio test statistic comparing the logistic
regression model in which the specified term has been dropped to the model in which all terms are
included. LRT is equivalent to the drop in explained deviance due to excluding the term from the model.
The null deviance is 12897.5. The LRT was tested against a c2 distribution to yield the associated P values.
Ddf: difference in degrees of freedom between the specified model and the null model, including only the
intercept. Chromosomal domain is a factor with three levels and hence contributes two degrees of freedom.
AIC: Akaike information criterion. Model 4 includes all two-, three-, and four-way interactions among the
variables. Consequently the LRT and P values for dropping single terms cannot be calculated.

Model 1 Model 2 Model 3 Model 4

LRT −log10(P) LRT −log10(P) LRT −log10(P) LRT −log10(P)
Gene size 149 33.5 38.7 9.30 – – X X
RNAi 13.1 3.5 10.8 3.00 – – X X
Conservation 222.6 49.6 81.6 18.77 – – X X
Distant linkage 36.2 8.7 35.1 8.51 – – X X
Interaction terms – – – – – – X X
Recombination rate – – – – – – – –
Chromosomal domain – – 263.1 57.12 444.8 96.59 – –
Background selection – – – – – – – –

Explained deviance 337.8 600.9 444.8 370.6
Residual deviance 12,559.7 12,296.6 12,452.7 12,526.9
Ddf 4 6 2 15
AIC 12,569.7 12,310.6 12,458.7 12,558.9

Model 5 Model 6 Model 7 Model 8

LRT −log10(P) LRT −log10(P) LRT −log10(P) LRT −log10(P)
Gene size 121.9 27.62 38.4 9.23 22.6 5.71 22.5 5.68
RNAi 14.4 3.83 11.1 3.06 11.8 3.23 11.9 3.25
Conservation 193.6 38.94 81.6 18.78 44.2 10.54 44 10.49
Distant linkage 35.9 8.68 35.1 8.50 33.4 8.12 33.3 8.11
Interaction terms – – – – – – – –
Recombination rate 52.1 12.27 1.2 0.56 – – – –
Chromosomal domain – – 212.2 46.07 – – 0.3 0.06
Background selection – – – – 363.6 80.32 100.7 22.98

Explained deviance 389.9 602.1 701.4 701.6
Residual deviance 12,507.6 12,295.4 12,196.1 12,195.9
Ddf 5 7 5 7
AIC 12,519.6 12,311.4 12,208.1 12,211.9
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Fig. 2. (A) The significance of background se-
lection in a logistic regression model (which in-
cludes gene-specific mutation and selection
variables) is plotted as a function of the index of
panmixis and strength of selection against delete-
rious mutations. Background selection is signifi-
cant at P < 0.01 across all but a small slice of
parameter space corresponding to very low rates
of outcrossing (black). The red lines bracket the
region of parameter space over which background
selection explains more of the local linkage prob-
ability than any other variable in the model. See
fig. S4. (B) Effects of background selection on
levels of variation along the chromosomes under
the best-fitting background selection model.
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variation results from mutation, selection, and
drift, the last governed by effective population
size (Ne) and acting uniformly across traits (22).
We asked whether mutation and selection could
explain why some transcript abundance traits are
influenced by their own genomic loci and why
others are not. We focused on these local QTLs
because they represent largely independent ge-
netic variants, are precisely localized, and ac-
count for a large fraction of the phenotypic
variance in traits with local QTLs (Fig. 1B).

Variation in local QTL density should reflect
variation in rates of local mutational input. In
C. elegans, the rate of spontaneous single-base
mutation has been directly measured and is uni-
form on a chromosomal scale, with no dependence
on recombination rate or domain structure (23).
Consequently, the rate of mutation that generates
local QTLs probably depends on the local mu-
tational target size. Indeed, genes with local QTLs
are longer than those without (t test on log-
transformed lengths, P = 0.004).

Variation in QTL density should also reflect
variation in the intensity of purifying selection,
which eliminates mutations that adversely affect
the phenotype. We used measurable correlates of
purifying selection to test this model. Genes that
exhibit phenotypeswhen their expression is knocked
down by RNA interference (RNAi) [effectively
essential genes; nearly all characterized RNAi
phenotypes would be lethal in nature (11)] are
less likely to have local QTLs than genes with no
RNAi phenotype (c2 = 55.1, P < 2 × 10−13).
Moreover, we observed fewer evolutionarily con-
strained nucleotides in genes with local QTLs
[(11); genes include introns and flanking se-
quence] than in genes without (t test on Box-Cox
transformed values, P < 4 × 10−23).

Phenotypic variance not attributable to local
QTLs, including measurement error and environ-
mental variance as well as distant genetic effects,
does not differ significantly between transcripts
with and without local QTLs (t test on log-
transformed data, P = 0.93). However, traits with
local QTLs are more likely than traits without to
also map to additional QTLs (c2 = 63.2, P < 2 ×
10−15). Thus, traits that can withstand local ge-
netic variation can also withstand other genetic
perturbations, consistent with these transcript
abundances experiencing weaker stabilizing se-
lection compared to other genes.

To determinewhether the variables associated
with mutational target size and strength of se-
lection have independent effects on local QTL
probability, we tested their explanatory value in
multiple logistic regression models. Gene inter-
val length, number of conserved bases, RNAi
phenotype, and presence of distant QTLs are all
significant predictors of local QTL probability in
a model that includes them all (model M1 in
Table 2).

However, when the chromosomal domain of
each gene (tip, arm, or center) was included as a
factor (model M2), it was by far the most ex-
planatory variable. Indeed, chromosomal domain

alone (model M3) explained the QTL data better
than a model incorporating all of the gene-level
attributes, even when all interactions among the
variables were included (model M4). Genic point
estimates of the recombination rate, although
significant if domain type was excluded (model
M5), had no significant explanatory value after
taking the domains into account (M6). Thus, the
domain patterning of local QTLs is not explained
by gene-level measures of mutation, selection, or
recombination.

Although the effective population size (Ne),
which governs genetic drift, is shared by all mea-
sured traits, natural selection can cause variation
in apparent Ne along the genome. Selection—
positive or negative—causes alleles in future
generations to be descended from a smaller sub-
set of current alleles than would occur without
selection, decreasing the Ne of the linked ge-
nomic interval (24–26). InC. elegans, high levels
of self-fertilization reduce the effective recombi-
nation rate, increasing the effect of selection at
linked sites on standing variation at the level of
sequence polymorphism (23, 27–29).

In primarily selfing species with small ef-
fective population sizes, such as C. elegans,
background selection, the reduction in neutral
variation due to linkage between neutral variants
and deleterious mutations undergoing determi-
nistic elimination from the population (26), is
likely to be the predominant form of linked se-
lection (28, 30), and it provides a parsimonious
explanation for patterns of variation given the
certainty that deleterious mutations arise and are
eliminated by selection. Although hitchhiking
due to positive selection may also be operating,
data from C. briggsae, a nematode that shares
C. elegans’s mating system, strongly favor back-
ground selection over the alternative models of
selection at linked sites (30). Under background
selection, the level of neutral variation at a gene is
a function of the number of linked sites susceptible
to deleterious mutation and the effective rate of
recombination between each such site and the
gene. We fitted an explicit model of background
selection to each gene (26, 31), estimating the
physical distribution of deleteriousmutations from
comparative genomic data and considering a
range of values for two poorly constrained pa-
rameters: the strength of selection against delete-
rious mutations and the inbreeding coefficient, F,
whose complement (P = 1 − F) rescales the
meiotic recombination rate to yield the effective
rate in partially selfing species (11).

Background selection was a highly signifi-
cant (P < 10−80, model M7) predictor of local
QTL probability in logistic regression analyses
that include all of the gene-specific mutation and
selection variables, and it entirely accounts for
the effect of domain type (model M8). Back-
ground selection accounts for more of the ex-
plained deviance than all gene-specific variables
combined, across nearly all of the parameter
space of inbreeding and selection intensity (Fig.
2A and fig. S4).

These results were robust to variation in
deleterious mutation rate, alternative treatments
of the genetic map and genic variables, different
significance thresholds for linkage, alternative
modeling methods, and exclusion of all genes
susceptible to hybridization artifacts (fig. S5).
Although our model omits the effects of Hill-
Robertson interference between linked mutations,
such effects are expected to operate primarily as a
scaling factor on the expected reduction in var-
iation due to background selection (32). The back-
ground selection model that best explains the data
predicts high levels of neutral variation on the
chromosome arms and low levels in the centers
(Fig. 2B). The low-recombination chromosome
tips are more similar to the high-recombination
arms than to the low-recombination centers be-
cause they are linked to deleteriousmutations only
on one side.

Although the effects of selection on linked
neutral nucleotide polymorphism are widely rec-
ognized, we have shown that such selection at
linked sites is also a major factor shaping her-
itable phenotypic variation. Consequently, quan-
titative genetic models predicated on uniform
effects of genetic drift across traits are not valid in
C. elegans.

Transcript abundances in C. elegans, as in
other species, are undoubtedly shaped by trait-
specific mutation rates and selection pressures
(3–7, 19–21). At the global level, however, the
propensity of traits to vary in C. elegans is ex-
plained by processes independent of the func-
tions of the individual transcripts. These findings
provide an alternative explanation for the ob-
served discordance between standing phenotypic
variation in C. elegans and that predicted from
neutral mutation-drift equilibrium (4). It may also
explain the fine-scale correlation between cis-
acting regulatory polymorphism and gene densi-
ty in humans (20).

Natural selection and quantitative genetic
analyses both rely on replicated measurements
of the marginal effects of alleles across ran-
domized genetic backgrounds. We have used
quantitative genetics in C. elegans to show that
randomization in this partially selfing species is
ineffective, diminishing the ability of natural se-
lection to evaluate individual alleles. Consequent-
ly the evolutionary fates of alleles—and hence
phenotypes—are determined less by their own
effects than by the genomic company they keep.
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Rapid Construction of Empirical
RNA Fitness Landscapes
Jason N. Pitt and Adrian R. Ferré-D’Amaré*

Evolution is an adaptive walk through a hypothetical fitness landscape, which depicts the relationship
between genotypes and the fitness of each corresponding phenotype. We constructed an empirical
fitness landscape for a catalytic RNA by combining next-generation sequencing, computational analysis,
and “serial depletion,” an in vitro selection protocol. By determining the reaction rate constant for
every point mutant of a catalytic RNA, we demonstrated that abundance in serially depleted pools
correlates with biochemical activity (correlation coefficient r = 0.67, standard score Z = 7.4). Therefore,
enumeration of each genotype by deep sequencing yielded a fitness landscape containing ~107

unique sequences, without requiring measurement of the phenotypic fitness for each sequence.
High-throughput mapping between genotype and phenotype may apply to artificial selections,
host-pathogen interactions, and other biomedically relevant evolutionary phenomena.

In vitro selection of RNA has led to the iso-
lation of aptamers and ribozymes expand-
ing our understanding of the biochemical

capabilities of this nucleic acid (1). Systematic
evolution of ligands by exponential enrichment
(SELEX) methodology also allows the study of
the process of evolutionary adaptation (2), which
has been conceptualized as an optimizing walk
through a fitness landscape (3). In molecular evo-
lution, such a landscape represents the sequence
space of a macromolecule and the fitness asso-
ciated with each genotype (4, 5). Two major dif-
ficulties have been identified in the empirical
construction of macromolecular fitness landscapes.
First, even for macromolecules of modest length,
the sequence space is vast; a 20-mer RNA or
protein has ~1012 or ~1026 possible sequences, re-
spectively. Second, to characterize the landscape,
the phenotypic fitness of each individual genotype
needs to be measured, or an indirect measure of
fitness needs to be validated. Therefore, although
fitness landscapes have been constructed through
computer simulations [see, for example, (6–8)],

experimental analyses of fitness landscapes have
typically been limited to dozens to hundreds of
genotypes [reviewed in (9)].

Advances in DNA sequencing methodology
allow us to sequence ~108 individual molecules
of lengths up to ~50 nucleotides (nt) with high
accuracy, producing larger accessible experimen-
tal sequence spaces (10). During an in vitro se-
lection experiment, the representation of RNA
molecules that are more active should increase.
Thus, we hypothesize that the abundance (or
“fecundity”) of a particular sequence in an RNA
pool undergoing selection, or its rate of increase,
may serve as a surrogate fitness metric. Therefore,
deep sequencing of earlier stages of an in vitro
RNA selection experiment (before the pool be-
came dominated by the most active species) and
enumeration of the frequency of each genotype
may directly provide an experimental fitness
landscape.

To establish the validity of this approach, we
mutagenized a well-characterized in vitro selected
RNA ligase ribozyme and subjected the resulting
pool to reselection. We chose the class II ligase
(11), because its length (54 nt) is comparable to
those of reliable individual reads by the Illumina
genome analyzer and because the wild type
[isolate a4-11, hereafter “master sequence;” fig.
S1 and (11)] of this catalytic RNA is extremely

active, likely being near-optimal. The mutagen-
ized pool (45 nt at a degeneracy of 21% per posi-
tion; expected frequency of master sequence =
0.0025%) can be analogous to a viral population
arising because of error-prone replication (12).
Our class II ligase construct catalyzes the for-
mation of a 2′-5′ phosphodiester bond between its
5′ triphosphate and the 3′ terminus of a substrate
RNA that is immobilized on a magnetic bead (fig.
S1) (13). Additional sequence pools served as
negative controls: One was composed of ~1013

random RNAs; the other was made up of mutants
of a sequence variant of the class II ligase that has
been engineered to favor 3′-5′ bond formation, but
which is crippled in catalytic activity (fig. S1) (14).

Our control pools were flanked by constant
sequences allowing their members to be distin-
guished from those of the master-sequence pool,
and neither was expected to be substantially en-
riched during the course of selection. The three
RNApoolsweremixed to generate a starting pool
with a complexity of ~6 × 1013 sequences (13),
with the genotypes of members of each pool
centered on a characteristic sequence distance
(number of mutations) from the master sequence
(Fig. 1A).

To separate individual sequences by their
reactivity, we incubated the RNA pool with sub-
strate RNA linked to beads, depleting the most
active species from the population. RNAs were
allowed to react for 24 hours. Then,we sequenced
species capable of ligation to the beads, and we
analyzed their genotypes and frequencies (Fig.
1 and table S1) (13). This one-step selection ex-
periment resulted in an enrichment of the master-
sequence pool at the detriment of the random and
engineered pools. The most abundant sequences
in the starting pool are polymerase chain reaction
artifacts from the random pool (Fig. 1B). These
disappear in the 24-hour selected pool (Fig. 1D).
Moreover, the representation of the master se-
quence (Hamming distance = 0) increasedmarked-
ly, from 0.0015 to 0.28% of the total population
(Fig. 1, C and E).

Because the enrichment of a sequence in the
selection experiment should be proportional to
its catalytic activity, we successively depleted an
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