
More than a decade into the genomic era, it remains easier to collect 
genomic data sets than to understand them. The research community 
has obtained vast quantities of data on genes, transcripts, proteins, 
metabolites and so on, but has discerned only faint outlines of the net-
works that connect these factors. Biologists are justifiably enthusiastic 
about the ability to describe networks of biological molecules that are 
co-expressed or co-localized, but a central goal of contemporary biology 
is to connect these observable patterns to form models that predict how 
biological networks operate as systems. The networks that matter in this 
context are networks of causal relationships, which can be uncovered 
by using experiments in which biological systems are perturbed1–3. The 
translation of genotype into phenotype depends solely on these causal 
relationships; many of the relationships are shaped by the co-expression 
of genes and physical interactions between cellular components, but 
many others are determined by intricate networks of cause and effect 
that are mediated by an organism’s physiology, behaviour, and interac-
tions with the environment4 (Box 1). Inferring causal networks from 
observations is often called reverse engineering, because the goal is not 
merely to identify components that are functionally related or situated 
near to one another but to understand how the system works as an 
integrated whole.

The classic method for reverse engineering a system is to poke a com-
ponent with a stick and then to characterize the effect of the perturbation. 
An alternative is to poke many components simultaneously and at ran-
dom, repeating the experiment over many random sets of components. 
Ever since R. A. Fisher put forward his ideas5 in the 1920s, statisticians 
have recognized such randomized multifactorial perturbation as the 
ideal experimental design for uncovering causation. Con veniently, the 
genetic variation that occurs naturally within a population is a source 
of multifactorial perturbation6,7. The use of natural genetic variation to 
probe the causal network that links genotype and phenotype has grown 
recently as large data sets have been generated for many experimental 
model species, crops and humans8–10. In this Review, I discuss recent 
progress in the application of natural genetic variation to reverse engineer 
the ‘genotype–phenotype map’. After introducing the basic experimen-
tal approach, I describe its advantages over traditional genetic screens 
and show how the resultant data allow tentative inferences to be made 

about causation. Finally, I discuss the steps that are being taken to gain 
a mechanistic understanding of the network that connects genotype to 
phenotype, and I point out potential obstacles to this process, as well as 
potential shortcuts. 

Quantitative genetics of transcript abundance
Genetically characterized populations are the central tool for uncover-
ing the genetic variants that underlie phenotypic variation. A common 
approach is to cross two inbred lines, each homozygous at every locus, 
to yield a hybrid that is heterozygous at every locus that differs between 
the strains. In a typical cross, thousands to millions of genetic loci differ. 
The ordinary process of meiotic recombination rearranges these poly-
morphisms within the hybrid germ line, and segments of each of the 
initial genomes are passed on randomly to the progeny of the hybrids. By 
tracking the genomic segments with molecular markers, the regions of 
the genome that contain genetic variants that affect phenotypes (known 
as quantitative trait loci, QTLs) can be identified11 (Fig. 1a–d). 

An important recent advance in connecting the links between geno-
type and phenotype has been to measure the ‘phenotypic states’ of the 
links, most notably the abundance of the transcripts corresponding to 
each gene of interest8–10,12. Quantitative genetic analysis of genome-wide 
transcript abundance is sometimes called genetical genomics6 or expres-
sion QTL mapping9, and the results from this type of analysis — the cor-
relations between genes and transcript phenotypes — can be represented 
by plotting the physical position in the genome of the gene correspond-
ing to each transcript against the position of the loci associated with vari-
ation in transcript abundance (Fig. 1d). In a properly controlled cross, 
an association between genotype and phenotype implicates genetic vari-
ation as the cause of the phenotypic variation; as is the case for all claims 
based on empirical data, confidence in such a causal inference is defined 
statistically. The genetic analysis of genome-wide transcript abundance 
poses distinct technical, computational and analytical challenges that 
necessitate careful avoidance of potential artefacts13,14 and that drive 
innovation in statistical genetics methods15–19.

Analyses typically show many linkages between the abundances 
of transcripts and the regions in the genomes where the structural 
genes for those transcripts reside. Such genes contain QTLs for their 
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own transcript abundance. Consequently, the data points align on the 
diagonal in Fig. 1d. Most of these local linkages will be attributable 
to cis-acting regulatory polymorphisms, although there will be some 
contribution from polymorphisms that affect the transcript abundance 
by acting in trans10,20,21.

Data points aligning in vertical bands in Fig. 1d indicate linkage 
hotspots: that is, regions of the genome at which variation alters the 
abundance of a large number of transcripts. The loci responsible for 
these large phenotypic effects might be highly influential regulatory 
loci22, or they might be loci at which variation has a marked but non-
specific effect on transcript abundances. Such pleiotropic alleles might 
alter cellular homeostasis in such a way as to shift the steady state for a 
large number of traits, without this shift being a regulatory effect10,23. 

The quantitative genetics approach described earlier, using natural 
genetic variation as a source of perturbations, has striking advantages 
over the classic (one gene at a time) approach7. First, the quantitative 
genetics approach involves massive hidden replication. The effect of each 
of the alleles present in the initial cross is measured repeatedly because 
each allele is present in a large number of the phenotyped progeny. A 
small phenotyping panel of 100 individuals represents on average a 
50-fold replication in studying the effect of every allele; similar amounts 
of replication are not feasible for a one-at-a-time approach. 

Second, the presence of simultaneous variation at multiple loci allows 
the interactions between perturbations (that is, genetic variants) to be 
uncovered. In the context of gene-expression genetics, such interactions 
are likely to be common24,25, and observations have shown that the inher-
itance of many transcript-abundance traits involves interactions between 
genes16,26,27. A prime example of this gene-interaction phenomenon is 
genetic redundancy; only by varying the redundant loci simultaneously 
can their effects be detected. 

Last, the simultaneous perturbation of a large number of factors results 
in the exploration of a larger ‘space’ of variation than when carrying out 
single perturbations. Genetically complex traits, which are shaped by 
variation at many loci, often show transgressive segregation: that is, the 
random assignment of alleles to the progeny of hybrids results in individu-
als with unusual collections of alleles, which yield extreme phenotypes. 
Transgressive segregation characterizes the majority of the transcript-
abundance traits in crosses in which its frequency has been examined26,28. 
The large space of phenotypes covered by genetically segregating popu-
lations increases the ability to detect relationships between traits. Tran-
script-abundance data from such populations, for example, are unusually 
successful at predicting functional relationships between genes29–33.

Causal ordering
A QTL can affect some traits directly and can affect others indirectly 
through the effects of intermediate traits. Of particular interest is 
whether variation in an organismal phenotype, such as a disease state or 
a behaviour, is an effect of transcript-abundance variation or a cause34. 
Only if the transcript-abundance trait is a cause (not an effect) can it be 
a target for perturbations that shape variation in the organismal trait, 
whether in the laboratory, the clinic or an evolving population. 

Under a broad set of assumptions, causality shapes correlations in a 
recognizable way, and its signature is conditional independence. This 
can be shown by considering three causally related traits: A, B and C. 
Under standard Markov assumptions, if variation in A causes vari-
ation in B, which in turn causes variation in C (this can be written as 
A → B → C), then when the distribution of B is known, A provides no 
additional information about C. A and C are independent conditional 
on B. This statement of conditional independence would not hold if the 
causal ordering were B → C → A, for example. Conditional independence 
is by itself insufficient to order causal links uniquely: A ← B → C yields the 
same conditional independence statement as A → B → C. Nevertheless, 
conditional independence is a powerful tool for distinguishing direct 
links between traits from indirect links, even when causal ordering is 
not possible1,35,36. 

The key advantage of studying genetic perturbations is that many 
causal orderings are prohibited by the central dogma that genotypic 

variation can cause phenotypic variation, but, at least within an indi-
vidual, phenotype does not feed back to affect genotype. Therefore, in a 
properly controlled cross, genetic perturbations are causally upstream 
of phenotypes and provide a terra firma into which causal networks can 
be rooted34,37–40 (Box 2). 

There are several methods for causally ordering pairs of phenotypes 
measured in segregating populations, including approaches that simul-
taneously map QTLs and fit causal models18, approaches that apply for-
mal statistical tests to identify direct causal links39, and approaches that fit 
various causal models to triplets that comprise two traits and a QTL and 
then compare the fit of the models using information-theory criteria34. 

Analysis of the correlations between multiple traits that share an 
underlying QTL can also help to identify the causal gene within a QTL 
interval33,37,41–44 — the major challenge in quantitative genetics today. 
Many such analyses incorporate sources of information in addition to the 
correlations, including data on the binding sites of transcription factors, 

The concepts of causality and networks are controversial. Many 
biologists are sceptical about inferring causality from statistics and 
about how general and useful network models might be, so it is valuable 
to consider how causality and networks can be interpreted in the 
context of the relationship between genotype and phenotype.

When carrying out a biological experiment, most people are content 
with the everyday theory of causation that dictates that one fact 
precedes a second and alters its probability (setting aside questions 
about the ontological status of probabilities). Empirical claims about 
links between causes and effects rely on assumptions (often implicit) 
and on statistical measures of confidence. Even when testing a simple 
single-gene perturbation, such as in a gene-knockout organism, it 
is assumed that inductive reasoning will lead to knowledge, that 
genotypes are fixed and that they causally precede phenotypes, and 
that all variables are fully controlled (for example, by comparing 
the experimental organisms with wild-type full siblings, by blinding 
observers to differences in treatment, and by carrying out randomized 
replications of the entire experiment). A researcher’s confidence that 
the wild-type organism and the mutant organism show real differences 
is influenced by statistical tests (for example, the P value from a t-test), 
which are themselves typically laden with assumptions.

In inferring probabilistic causal networks, the assumptions are more 
numerous, but the conceptual framework is the same. At the end of an 
analysis, the outcome is a claim about cause and effect, and this claim 
is accepted to an extent that is defined by the researcher’s comfort 
with the assumptions and the statistics. For genetics experiments, the 
limits of comfort for most researchers lie not far beyond the single-
gene perturbation experiment, and making inferences about a causal 
network is typically seen as a technique for nominating candidate genes 
for follow-up experiments. 

Whether networks exist is a popular topic at biology department 
happy hours, but it is not necessary to subscribe to the reality of a 
Platonic Network, an ideal form independent of the material world, in 
order to embrace the idea that there is a many-to-many relationship 
between causes and effects in biology. The more pressing question 
is which components are needed to represent such a network in a 
predictive model: molecules, interactions, dynamics, all of these, or 
more? Conveniently, the set of variables in a causal network is entirely 
circumscribed by the set of things that vary. A molecule or an event can 
be required for a biological process, but if it does not vary, then it cannot 
be a cause. In that sense, causal networks in genetics are analogous 
to the geneticist’s concept of heritability, which describes not the 
dependence of a trait on inherited genes but the proportion of the trait’s 
variation that can be explained by genetic variation in the observed 
sample. A causal network that is inferred from a genetically segregating 
population will therefore depend on the genetic variation that is 
present in the population and on the distribution of variation in the 
environment across the sampled individuals. Within that framework, a 
causal network constitutes a predictive model of the consequences of 
perturbing the represented variables.

Box 1 | Do causal networks exist?
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the interactions between proteins, and the presence of polymorphisms 
in the sequences of each gene in the QTL. As a starting point, a gene 
that is found at the same location as a QTL for its own abundance is a 
strong candidate for the causal gene underlying variation in other traits 
that link to the same location, with the gene’s transcript abundance as a 
candidate causal trait29. 

The use of phenotypic correlations to identify causal transcripts is 
especially promising in the context of genome-wide association studies. 
These studies have recently uncovered a wealth of high-confidence, rep-
licated associations between genetic variants and diseases in humans (see 
page 728), but the disease-associated variants are often in non-co ding 
regions with unknown function45. The mechanisms that link genotype 
and disease in these cases can be identified by taking advantage of the 
structure of the correlations among transcript-abundance traits and dis-
ease states in human populations32,46–48. In population-based association 
mapping, however, correlations between genotype and phenotype can 
arise from external causes that are common to the correlated variables, 
for example from the stratification of populations by age or ethnicity. 
Consequently, the causal ‘anchor’ provided by genotype in these cases 
is less secure than in the experimental setting of inbred line crosses. 
But studies in animal models can be used to corroborate findings, pro-
viding reassurance31,49.

Causal networks
To gain a predictive, systems-level understanding of biological caus-
ation, researchers need to integrate the entire ensemble of genetic vari-
ants and phenotypic traits (and not just to causally order trait pairs). 
Several approaches aim at this more general goal, and Bayesian net-
works provide the most popular framework1. A Bayesian network is a 
graph of random variables, each representing a phenotype in this case, 
that are connected by directed edges. A set of probability distributions 
describes the state of each variable conditional on the variables with 
edges leading to it. The graph and probability distributions define a 
conditional probability statement. One problem with using Bayesian 
network graphs is that several directed graphs can be described by a 
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Figure 1 | From genetic randomization to causal network. A genetically 
randomized population, such as a panel of recombinant inbred lines whose 
chromosomes carry random segments of genome from two progenitor 
strains (depicted in orange and blue) (a), is a starting point for linkage 
analysis of a phenotype. In this case, the phenotype is the abundance 
of transcripts corresponding to a gene denoted as gene 3. The 
abundance of gene 3 transcripts varies between the recombinant lines 
(b, left). Each point along the genome is tested to see whether it affects 
the abundance of gene 3 transcripts (b, centre and right), and statistical 
evidence is uncovered for the linkage of gene 3 with two regions (indicated 
by asterisks) (c). These regions are called QTLs. If a similar experiment 
is carried out for many transcript-abundance phenotypes (not just for 
gene 3, but for genes 1–10), the positions of the QTLs that affect transcript 
abundance (asterisks) can be plotted against the physical positions of 
the gene corresponding to each transcript (green stars) (d). In such a 
plot, the data (red dots) along the diagonal line represent local linkages, 
typically due to cis-acting regulatory polymorphisms. Vertical alignments 
in the plot indicate linkage hotspots. The plot depicted implies a high-
level causal network (shown in e), in which QTL variation is the cause of 
variation in transcript-abundance phenotype. Transcript-abundance QTLs 
can co-localize with QTLs for organismal phenotypes such as a disease 
(not shown); for illustrative purposes, disease is shown linked to QTL G. A 
goal of the reverse engineering of causal networks is to include phenotypes 
as variables, for example to determine whether the transcript abundances 
that are affected by QTL G are causes or effects of the disease. Although 
the traits are densely connected by correlations — as is evident from the 
hypothetical correlation network that is depicted (f), which connects all 
traits that share perturbations — a causal network (f) reveals that QTL G 
acts directly on gene 9, the transcript abundance of which affects genes 1, 
2, 4 and 5. The transcript abundance of gene 2 is a cause of disease, 
which in turn alters the transcript abundances of genes 4, 7 and 10. Many 
transcripts are correlated with disease, but only perturbations of genes 2 
and 9 will affect disease outcome.
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single conditional probability statement (as discussed earlier), so obser-
vations of the random variables (the transcript abundances in this case) 
cannot uniquely identify the directed network that underlies the graph. 
Moreover, a second problem is that Bayesian network graphs are acyclic 
and therefore cannot model feedback regulation; the consequences of 
this limitation for the utility of Bayesian network are unclear1,31,37. A 
third problem is that the space of possible network graphs is large, mak-
ing causal-network inference a computationally intractable problem1. 
These difficulties notwithstanding, transcript-abundance measure-
ments from genetically segregating populations are uniquely suited to 
uncovering directed Bayesian networks for two main reasons29,37. First, 
a trait that is caused by another trait should share an underlying genetic 
perturbation: a QTL. This simple filter excludes a huge proportion of 
the space of possible networks, making the problem tractable. Second, 
genetic perturbations anchor causal networks (as discussed earlier), 
giving direction to the edges. Although large-scale causal-network 
inference remains challenging, the incorporation of genetic data clearly 
improves the quality of the predictions over those derived solely from 
trait correlations50. 

In parallel with Bayesian network models, structural equation models 
have been applied to transcript-abundance data from segregating popu-
lations38,51. These models involve systems of linear equations organized 
into a network structure; a linear model is fitted with variables that simul-
taneously function as predictors and responses. Although structural 
equations, unlike Bayesian networks, have the advantage of allowing 
feedback cycles to be modelled, they require the standard assumptions of 
linear modelling. Therefore, when nonlinear causal dynamics underlie 
transcript abundances, problems can arise. Bayesian networks typically 
deal with nonlinearity incidentally, by classifying all of the data into 
simple discrete categories (for example, upregulated, downregulated and 
unchanged), a simplification that has its own drawbacks50.

An alternative approach is to generate a simple network from pairwise 
trait correlations and then to trim this network by testing for conditional 
dependence relationships35. The resultant undirected graph can then be 
directed by anchoring the edges in QTLs40. There are clear computational 
advantages to starting with a network that is derived from pairwise cor-
relations. Because correlations between genes typically show modu larity 
— with clusters of highly correlated genes being largely uncorrelated 
with other such clusters — pairwise analyses can break intractably large 
problems into problems that focus on individual modules29,52,53. 

Two recent studies on disease phenotypes in humans and mice used 
this shortcut of partitioning the transcript-abundance data into mod-
ules of correlated traits31,32. Breaking the problem down further, the 
authors compared causal orderings for pairs of transcript abundances 
and disease phenotypes, to see whether each transcript could be placed 
causally upstream of the disease state. A single module, evident in both 
mouse and human data, was significantly enriched for putatively causal 
traits; subsequent experimental manipulations corroborated these infer-
ences. Although this is far from a complete reverse engineering of the 
genotype–phenotype map, these empirical successes (reducing genomic 
data to the two-trait ordering problem) point to a coming age in which 
prediction will be a common tool.

Quantitative genetics is evolutionary genetics
The central dogma that genes are causes of phenotypes within an indi-
vidual aids in the anchoring of directed networks. But among individu-
als, phenotypes feed back by selection to shape genes. Natural variation 
therefore samples a biased subset of possible genetic perturbations, a 
subset that is enriched for those variants that are not strongly deleteri-
ous. Under the classic infinitesimal model of the genotype–phenotype 
map, variation derives from mutations of small effect with limited 
pleiotropy 54. If this model holds, the modularity of networks inferred 
from natural variation29,31,32,37 might be an epiphenomenon of natural 
genetic perturbations, the effects of which are less systemic than those 
of random mutations. 

The effect of selection is evident in the numbers and types of QTL 
detected in typical studies. James Ronald and Joshua Akey found that the 
proportion of genes showing local QTLs in a yeast cross is smaller than 
expected under neutrality, implying that negative selection keeps certain 
perturbations at low frequency55. Similarly, genes that are crucial regu lators 
of essential processes are likely to be under-represented among genetically 
variable genes. Genes that encode transcription factors, for example, are 
clearly candidates when looking for the genes involved in varying gene 
expression, but these genes are largely absent from expression QTLs18,56. 
Nevertheless, links between transcription factors and target genes can be 
detected by causal inference approaches, even when the transcription-
factor locus contains no genetic variation. The only requirement is that 
some phenotypic measure of the transcription factor’s activity (such as 
the abundance of the corresponding transcript) is causally intermediate 
between the genotype and the target gene’s phenotype31. 

The basis for causal inference can be shown graphically. Consider a 
population of haploid individuals with a single causal locus (G) that 
has two alleles. The allelic state at this locus causes variation in the 
abundance of the corresponding transcript (T1), and additional sources of 
variation (genetic, environmental and stochastic) also influence T1. Data 
can be simulated with the allelic effect modelled as β1 and the additional 
variation modelled as normally distributed noise, ε. Thus, T1 = β1G + ε, 
where G is in a indicator variable for genotype. Variation in the abundance 
of T1 causes variation in a downstream trait, T2, which is also affected by 
other sources of variation, so T2 = β2T1 + γ, where γ is an additional noise 
term. The causal ordering is shown as a scheme in panel a of the figure, 
and simulated data are plotted in panel b of the figure. 

Data were simulated to represent 300 individuals. Each data point is 
coloured according to genotype (blue for one allele of G and red for the 

other), and the mean values for each trait are indicated by a coloured 
line for each genotype. (For this simulation, genotypes were assigned 
indicator variables: red was assigned –1, and blue was assigned 1. The 
parameters used were β1 = 0.5 and ε ~ N(0, 1), yielding a zero-mean trait 
T1. For T2, β2 = 1 and γ ~ N(0, 1), so T2 is simply T1 with additional noise.)

The causal links mean that the traits, T1 and T2, are correlated with 
one another and that both are correlated with genotype (figure, b). 
Nevertheless, the relationship between T2 and G is entirely mediated by 
T1. T2 conditional on T1 is independent of genotype; the mean phenotype 
for each genotype is the same (figure, c). Conversely, the distribution of 
T1 conditional on T2 remains dependent on genotype (figure, d). It is the 
noise component of T1 variation, ε, propagated through T2 that makes this 
mode of analysis possible, and it is the causal anchor of the genotype that 
gives it direction. 

Box 2 | Causal ordering yields conditional independence
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The effect of selection on the filtering of genetic perturbations varies 
according to the type of experimental population studied. Inbred line 
crosses often involve genetically divergent lines, chosen to maximize 
phenotypic or genotypic differences. The alleles that contribute to diver-
gence are likely to differ in their allelic effects from those that contribute 
to standing variation (the ordinary genetic diversity present within a 
population)57–59. Crosses between divergent inbred lines are more likely 
to uncover rare large-effect mutations (that is, linkage hotspots) than are 
samples of individuals from large populations32,55,60. Such crosses might 
also be biased towards a subset of perturbations with large effect, not 
individually but in combinations, as a result of coadaptation61. Pervasive 
genetic interaction means that causal links between pairs of genes will 
be poorly modelled, although there has been progress towards solving 
this problem recently16. 

The suite of naturally occurring perturbations is also shaped by popu-
lation genetics phenomena that are unrelated to the fitness effects of the 
perturbations themselves. Genetic variants tightly linked to other variants 
that are the target of selection are evolutionarily coupled to them, yielding 
a correlation between local recombination rate and levels of genetic vari-
ation62,63, and mutagenic recombination can produce the same pattern64. 
Genes present in regions that undergo recombination at a low rate are 
less likely to contribute to the pool of genetic perturbations than genes in 
regions where recombination occurs frequently. If gene location is non-
random with respect to recombination rate, then there might be fewer 
perturbations belonging to particular functional classes61.

Prospects for genetical systems biology 
Causal network inference faces many difficulties, and its application 
to gene expression in segregating populations introduces additional 
challenges. Despite many published reports of empirical successes, it 
is important to consider the pitfalls that unpublished studies might 
have encountered. Many of these pitfalls are now well recognized, and 
there are clear paths around them, on both the experimental front and 
the analytical front, towards a richer understanding of the genotype–
phenotype map. 

One of the most problematic assumptions that is made when drawing 
causal inferences from gene-expression data is that measurement errors 
are similarly distributed across traits. If a causal trait is poorly measured 
and the trait it affects is well measured, then the measurements of the 
‘effect trait’ might report the true values of the causal trait more accu-
rately than measurements made directly on the causal trait itself 34,39,51. In 
such cases, conditional correlation approaches can yield inverted infer-
ences (Fig. 2). There are good biological reasons to be concerned about 
this situation. For example, regulatory molecules are often present at low 
abundances in a cell, but their effects are amplified by the dynamics of 
gene regulation. Thus, variation in the number of transcripts encoding 
a low-abundance transcription factor might be the cause of variation 

in the number of transcripts encoding a high-abundance structural 
protein. The difficulty arises in that the high-abun dance transcripts 
might be easy to measure with great precision, whereas the low-
abundance transcripts might be present at the threshold of detection. 
One possible solution is to return to the early designs of microarray 
experiments, when technical replicates were routine. Taking multiple 
independent measurements of transcript abundances from a single bio-
logical sample would generate empirical parameters for gene-specific 
error models. The potential to be misled when making causal inferences 
underscores the point that a causal inference yields an assumption-laden 
probability statement, and stronger claims about causality need to be 
experimentally validated3.

Another concern is that data for transcript-abundance mapping 
are derived from mixed populations of cells. Consequently, the meas-
urements describe cellular mixtures, the characteristics of which are 
determined by developmental and cellular demographics31,32,65. This 
is as true for yeast, which has been studied by measuring unsynchro-
nized cultures (which contain cells at different stages of the cell cycle), 
as it is for animals and plants, in which tissues or whole organisms are 
assessed. A study of mice that varied genetically in the cell-cycle timing 
of their haematopoietic stem cells took advantage of the issue of mixed 
cell populations to identify which genes were expressed differentially in 
the different cell populations65. 

A related issue is that networks inferred from segregating populations 
are static representations. Without time-series data, there can be no 
account of dynamics. Inferred causal links correspond to perturbations 
that alter the steady state. In a system with feedback, which is likely to 
include almost all biological steady states, the causal links will describe 
only the causes that ‘win out’ over others in shifting the phenotypic bal-
ance31. For practical considerations of whether it is possible to predict 
how novel perturbations will affect steady states, these low-dimension 
projections of the network might be adequate; however, for true reverse 
engineering, more-complete models are needed. Time-series data have 
proved exceptionally important for solving the general problem of 
causal-network inference2, and it is clear that integrating such infor-
mation into studies of genetic variation will improve the knowledge 
gained from these studies. 

Many network-inference methods depend on the inclusion of all 
causal variables in the models1, but such completeness is not plausible for 
most biological networks. Some phenotypic causes will be overlooked 
because they are not measured: for example, unannotated genes, genes 
present in structural polymorphisms that are absent from reference 
genomes, and transcripts of small RNAs. In addition, the abundances 
of metabolites are typically not considered, although much progress 
has been made in this area recently40,66. Regulatory events for which 
there are no transcriptional indications (for example, post-translational 
regulation) will also be missed, although again progress is occurring on 
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Figure 2 | Measurement error can confuse causal inference. The effect of 
errors in measurement on causal inference is depicted for the population, 
parameters and conditions set out in Box 2. In brief, a population of haploid 
individuals has a single causal locus (G) with two alleles, and the allelic 
state at this locus causes variation in the abundance of the corresponding 
transcript (T1), which subsequently affects the abundance of another 
transcript (T2). a, The measured values of T1 and T2 in this example 
were simulated as their true values from Box 2 plus normally distributed 
error, yielding T1ʹ and T2ʹ. For T1ʹ, the error is normally distributed with 
a variance of 2, whereas the variance of T2ʹ is tenfold lower. The causal 
ordering of this scheme is shown. b, T1ʹ and T2ʹ are correlated with one 

another and linked to the genotype, which is represented by the colours 
(blue for one allele of G and red for the other). However, the conditional 
correlations are now misleading with respect to the true causal network 
(shown in a). c, T2ʹ remains dependent on genotype after taking T1ʹ into 
account, which is unexpected given the causal ordering (a) (and given that 
T2 conditional on T1 does not depend on genotype; Box 2 figure, panel c). 
d, T1ʹ is nearly independent of genotype after taking T2ʹ into account, 
which is also unexpected given the causal ordering (a) (and given that T1 
has been shown to depend on genotype; Box 2 figure, panel c). In total, 
the effect of the differences in measurement error is to make T2ʹ a better 
measure of the true T1 than T1ʹ itself.
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have an increasingly central role. ■
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