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Summary
Hidden among the myriad nucleotide variants that
constitute each species’ gene pool are a few variants that
contribute to phenotypic variation. Many of these dif-
ferences that make a difference are non-coding cis-
regulatory variants, which, unlike coding variants, can
only be identified through laborious experimental analy-
sis. Recently, Cowles et al.(1) described a screening
method that does an end-run around this problem by
searching for genes whose cis regulation varies without
having to find the polymorphic nucleotides that in-
fluence transcription. While we will continue to require a
diverse arsenal of experimental methods, this versatile
method will speed the identification of functional genetic
variation. BioEssays 25:421–424, 2003.
� 2003 Wiley Periodicals, Inc.

Introduction

There are only a few major kinds of genetic variation that can

influence phenotypic variation: amino acid replacements that

alter protein function, geneduplications and deletions, and cis-

regulatory variants that influence gene expression—its induc-

tion, level, developmental timing and spatial pattern. While

variation in the first two categories is easily detected by

examining DNA sequences, variation in the third category, cis-

regulatory variation, has proved refractory to bioinformatic

discovery; the regulatory needles are buried in a haystack of

functionless variants. Although cis-regulatory variation has

been forwarded as the major genetic basis for phenotypic

variation and evolution,(2–6) we know remarkably little about its

distribution in nature.

Traditionally, the way to verify the functional consequences

of a cis-regulatory variant is to clone the cis-regulatory DNA

from each allele into otherwise identical reporter constructs,

which are then transfected into cultured cells. Differences in

reporter activity point to differences in cis-regulation. This

approach has been remarkably successful at validating sus-

pected functional variants; it has verified the effects of cis-

regulatory polymorphisms on the transcription of more than

100humangenes.(6) But the technique has severe drawbacks.

First, it requires that candidate functional variants be

identified. Because cis-regulatory DNA can extend over tens

or hundreds of kilobases from the start of transcription, there

are often too many variants to test. Second, the effects of

cis-regulatory variation are notoriously context dependent.

Because transcriptional initiation involves dozens of protein–

DNA and protein–protein interactions, failure to include

particular DNA elements in a reporter construct may result in

false negatives, suggesting that variants are functionless

when in fact they are missing required functional partners.

Third, the use of plasmid DNA transfected into transformed

cell lines raises the possibility of misleading artifacts—due to

supercoiling of the plasmids or the high concentration of

plasmid relative to transcription factors, for example. Finally,

generating and evaluating allelic reporter constructs is an

expensive and time-consuming method ill-suited to a sys-

tematic search for regulatory variants.

The method

Cowles et al.(1) do away with the need to identify and ex-

perimentally analyze regulatory variants by ignoring the var-

iants; instead they focus on finding thegeneswhose regulation

is influenced by the variants. The method is simple: allele-

specific quantitative RT-PCR.

Cowles et al.(1) crossed isogenic strains of mice to produce

F1 mice bearing one allele at each locus from each parental

strain (Fig. 1). They then estimated the relative abundance of

the RNA transcribed from each allele at each locus (69 genes

in their initial report); differences in the abundance of allelic

mRNAs point to cis-regulatory differences between the

parental strains.

The method eliminates potential sources of artifact and

controls for the usual confounding variables. The problems of

artifact associated with generating reporter constructs and

introducing them into cell lines are solved by comparing ex-

pression from two alleles in their native chromosomal context

in vivo. Moreover, the two alleles compete against one another

in a common cellular environment; genetic background and

environmental variation are therefore eliminated from the

equation. Any allelic difference in transcript abundance is

necessarily related to genetic differences in cis.

The basic requirement for allele-specific quantitative RT-

PCR is a means of identifying the allelic source of the

transcripts. Cowles et al.(1) use single nucleotide polymorph-

isms (SNPs) in the transcripts, which lend themselves to easy

measurement in single base extension assays (Fig. 1). The

necessity for allele-specific markers is perhaps the largest

impediment to wider application of the method; comparisons
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among strains bearing the same marker allele are impos-

sible, and many genes lack common exonic variants. Cowles

et al.(1) could perform only 41% of the possible pairwise com-

parisons among four strains for the 69 genes; for the

other comparisons, the parental strains did not differ at the

marker SNP.

How much variation?

Four of the 69 genes examined showed allelic differences in

gene expression of at least 1.5-fold among the strains. This

result points to a large amount of segregating cis-regulatory

variation genome-wide, but, as Cowles et al.(1) are careful to

note, their numbers are certainly underestimates, for several

reasons.

First, most genes were only compared among two or three

of the four strains; consequently, their result is less like a

survey of variation in a population andmore like an estimate of

regulatory heterozygosity. By comparison, human nucleotide

heterozygosity is less than one in a thousand, but in a larger

population survey, nucleotide variants typically occur every

several hundred bases.(7)

Second, the results are based on expression in only three

tissues: spleen, liver and brain from adult females. Every

additional tissue or developmental stage examined provides

another chance to find allelic differences in gene expression.

Fortunately, the versatile method of Cowles et al.(1) can be

extended to any number of tissues from a single mouse, and

tissues from F1 sib mice can be harvested from different

developmental stages. Sib mice can also be raised under

different environmental conditions; genotype-by-environment

interaction is known to be a common phenomenon in gene

expression variation.(6) In the future, it will also be valuable

to examine both males and females; sex-specific genetic

variation in gene expression may be quite common, as sug-

gested by experiments in Drosophila.(8)

Ultimately, all methods of finding regulatory variation face a

major false-negative problem. Gene expression is sensitive to

a vast multidimensional array of variables, including not just

tissue type, developmental stage and sex, but also tempera-

ture, presence of inductive cues, intracellular ion concentra-

tion, and so on. Until heritable variation in gene expression can

be assessed over the full state space of these variables, all

estimates of its magnitude will fall short of the true value.

Nevertheless, Cowles et al.’s(1) results are quite informa-

tive. Of the four genes confirmed to show allelic differences

in expression, one is expressed in one tissue only, one is

differentially expressed in all three tissues, and two show

allelic differences in one tissue, but not the others. These data

point to a question of growing importance in quantitative,

developmental and evolutionary genetics: to what extent is

gene expression variation correlated among expression do-

mains? This question is at the heart of such ideas as modu-

larity, evolvability and coordinate pleiotropy.(9–12) Cowles

et al.’s four data points show that expression variation can

be, but need not be, correlated among tissues.

Genetic backgrounds

Allele-specific quantitative RT-PCR controls perfectly for

genetic background, but that does not mean that genetic

background can be ignored. One peculiarity of measuring

expression in the genetic background of an F1 hybrid is the

high potential to discover allelic variation in cis-regulation that

is not present in either parental strain. The simplest scenario

involves one strain with a transcriptional activator but no cis-

regulatory site for it to bind, and the other strain with a binding

site but no transcription factor. In this case, the two alleles will

exhibit differential expression in the F1, where the transcription

factor from one strain can bind the cis-regulatory allele from

the other, but the two parental strains will not differ from one

another. The cis-regulatory polymorphism is real, but the F1

Figure 1. Cowleset al.(1) crossedmice fromstrains that differ

at a single nucleotide polymorphism within a transcript of

interest. The F1 mice express both transcripts, but the

abundance of each is a function of regulatory variants linked

in cis with the marker SNP, which here is a C/T polymorphism.

After the transcript is amplified from a tissue of interest, the

relative abundance of the two allelic versions of the transcript is

estimated by single base extension: the target strand of the

cDNA is incubated with fluorescently labeled nucleotides and

primers that terminate at the base adjacent to the SNP; in

effect, single base extension is a one-base-long sequencing

reaction. The results of single baseextension canbe readonan

automated sequencer; here, the transcript from the strain A

chromosome, with the T allele of the marker SNP, is more

abundant than the transcript from the strain B chromosome.

Cowles et al.(1) use DNA from the tissue of interest, and pooled

DNA from the parental strains, as standards to calibrate the

sequencer reads.
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results are misinformative about expression differences be-

tween the parents.

Should such epistasis, or interaction among loci, be amajor

concern? Theoretical arguments and empirical evidence

suggest that the scenario described above may be common.

First, transcriptional regulation is notoriously polygenic, so

there are many potential epistatic actors, all of which (to a first

approximation) will be expressed in the F1. In the simplest

case, the trans-acting element is a transcription factor, but it

could equally be a DNA acetylase, a transcriptional cofactor, a

kinase that activates the cofactor, a diffusable signaling

molecule that leads to the activation of the kinase, or even a

calcium channel that alters the intracellular ion concentration.

Quantitative models of variation in gene networks have con-

sistently found that epistasis is a common property of such

systems.(13–16)

Second, the limited empirical evidence points to rampant

epistasis in thegenetic basis of variation in geneexpression. In

a classic study, Damerval et al.(17) used two-dimensional gels

tomeasure theabundanceof 72proteins inanF2progeny from

a cross of maize lines. They then treated each protein as a

quantitative trait and mapped quantitative trait loci (QTL)

underlying the observed variation. Their analysis revealed

that interlocus interactions, epistasis, contributed to variation

in abundance of ten of the proteins, 14% of the total. As

Damerval et al.(17) note, such pervasive epistasis in not

commonly encountered in QTL mapping of agronomic traits;

the proximity of gene expression phenotypes to their genetic

bases may make the underlying intermolecular interactions

more important contributors to observed variation.

Further empirical evidence comes from microarray com-

parisons of gene expression among mouse strains, which

suggest that a substantial fraction of genes are differentially

expressed among strains; each of these genes is available to

act epistatically with cis-regulatory variants. For example,

Karp et al.(18) found that 739 of 2718 genes—27%—are

differentially expressed in the lungs of two laboratory strains

of mice.

Complementary approaches

One time-consumingbut powerfulwayaround theproblemof a

hybrid genetic background is to use repeated backcrosses into

each parental strain to produce mice congenic for each cis-

regulatory allele in each genetic background. Congenic mice

have been used successfully to discover cis-regulatory

variation since early work on b-glucuronidase.(19) More

recently, Rozzo et al.(20) used microarrays to measure gene

expression from mice congenic for an interval on chromo-

some 1 and observed that only genes on that interval showed

expression differences between the congenic and parental

strain. The cis-regulatory basis of the difference was

confirmedbyallele-specific quantitativeRT-PCRonbackcross

mice heterozygous only at the interval of interest.

Another approach is to map the genetic basis of gene

expressionvariation.Expressionof thousandsof genes canbe

measured at once on microarrays, and the expression level of

each treatedas aquantitative trait. Bremet al.(21)mappedQTL

for expression variation for 570 yeast genes. For about 36% of

these genes, expression variation mapped to the gene locus

itself, indicating cis-acting differences between the parental

strains.

QTL mapping has advantages and disadvantages relative

to the Cowles et al.(1) method. On the one hand, quantitative

genetics requires a vastly larger number of crosses and mea-

surements. On the other hand, QTLmapping withmicroarrays

does away with the need to develop and test gene-specific

assays. Moreover, QTL mapping can explicitly accommodate

epistatic interactions between cis- and trans-acting variants.

The numbers are also telling: the Brem et al.(17) analysis of

yeast identified about 200 genes with cis-regulatory variation,

while Cowles et al.(20) screened only 69 genes, and found

variation at only four.

Elaborations on the allele-specific method

There is no best way to find regulatory variation, but the

Cowles et al.(1) method adds a potent tool to compare alleles

in vivo, and the method has a proven track record in human

genetics. Though the inability to cross isogenic lines has

prohibited its use as a general screening method in humans,

allele-specific quantitative RT-PCR has been used to validate

the effect of suspected functional variants. The approach is to

measure gene expression in individuals heterozygous for the

transcribed marker variant when that variant is in demon-

strated linkage disequilibrium with suspected functional var-

iants. To date, the method has confirmed allelic differences in

transcription atHLA-DQB1, INS, andUCP2.(22–24) Thehuman

work also points to potential extensions of the allele-specific

quantitation method. In a study of the COL1A1 locus, Mann

et al.(25) used allele-specific quantitative RT-PCR on total RNA

rather than the poly(A) fraction; this allowed them to use a

marker SNP in an intron. Such an approach allows themethod

to be applied to the many human genes lacking common

exonic SNPs.

Protein-based allele-specific methods have also been

developed. Klose et al.(26) applied allele-specific quantitation

to mouse brain proteins using two-dimensional gel analysis of

a cross between a laboratory mouse strain and Mus spretus.

Of 293 proteinswhose allelic source could be discriminated on

the gels (i.e., those that differ in mass or charge between the

two parental strains), 221 also showed differences in abund-

ance. Of these, 134 were distinct enough to allow further

analysis in additional crosses. In thesecrosses, cosegregation

of the protein migration pattern and protein abundance points

to the role of cis-acting differences between the parental

strains. Some 98 proteins, or 73% of those measured, prov-

ed to have cis-regulatory differences between the strains.
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Damerval et al.’s(17) earlier study of maize produced similar

(though fewer) data: of 15 loci with distinguishable alleles, ten

showed abundance differences, and for seven of these the

abundance differences cosegregated with protein migration

pattern.

Conclusion

Allele-specific methods, of which theCowles et al.(1) approach

is the most systematic, promise to rapidly identify genes

whose expression varies among individuals due to cis-

regulatory polymorphism. In conjunction with QTL mapping,

wenowhave the tools to find cis-regulatory variationefficiently.

Ultimately, however, we will want to know which individual

nucleotides contribute to the variation that we find, and we will

want to know themechanisms by which the variants act.While

we will therefore need to retain reporter constructs in our

experimental arsenal, Cowles et al.’s method will allow us to

focus our efforts.
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