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Abstract

Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important
challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within
the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and
disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing
selection in different human populations, we examined associations between specific polymorphisms and gene expression
in vivo and in vitro. We identified five polymorphisms within the 5# flanking region that affect transcript abundance: a 68-
bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not
previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and
cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants
on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These
data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait
consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively
well-studied cis-regulatory regions.
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Introduction
Manyfunctionalpolymorphismswithincis-regulatoryregions
influence transcription in humans (reviewed in Rockman
and Wray 2002; Knight 2004; Pastinen and Hudson 2004).
Some of these variants have clear trait, fitness, and disease
consequences (Tournamille et al. 1995; Hamblin and
Di Rienzo 2000; Bamshad et al. 2002; Enattah et al. 2002;
Horan et al. 2003; Boodhoo et al. 2004; Hacking et al.
2004; Rockman et al. 2005; De Gobbi et al. 2006; Tishkoff
et al. 2007; Luca et al. 2009). Genome-wide screens for poly-
morphisms that influence transcription indicate that segre-
gatinggeneticvariation influencesthetranscriptionofa large
proportion of genes (Lo et al. 2003; Schadt et al. 2003;
Pastinen and Hudson 2004; Stranger et al. 2007). With very
few exceptions (Horan et al. 2003; Tao et al. 2006), however,
little is known about the functional consequences of multi-
ple sequence variants on the transcription of a single gene.

Here, we present an analysis of the impact of multiple
segregating polymorphisms on the expression of PDYN
(prodynorphin). The peptide encoded by PDYN can be pro-
cessed into five distinct neuropeptides, which in experimen-
tal models play roles in nociception, dysphoria, dyskinesia,
motor control,memory acquisition, learning, stress-induced
analgesia, and modulation of reward in addiction (Kieffer
and Gaveriaux-Ruff 2002; Corbett et al. 2006; Marinova

2006). Previous studies have implicated a 68-bp repeat lo-
cated 1,250 bp upstream of the transcription start site in
differential PDYN expression in humans (Zimprich et al.
2000; Nikoshkov et al. 2008), although another study
did not detect this effect (Cirulli and Goldstein 2007). Seg-
regating haplotypes in humans contain one to four 68-bp
repeats, with two or three repeats the most prevalent in
surveyed populations (Zimprich et al. 2000; Rockman et al.
2005). The 68-bp repeat has been the subject of several
functional analyses and genetic association studies. One-
and two-repeat haplotypes have lower inducibility in vitro
than three- and four-repeat haplotypes, and that same pat-
tern has been seen in associations between repeat number
and expression level in vivo (Nikoshkov et al. 2008). This
cis-regulatory variant has been investigated extensively in
association studies for a spectrum of disease phenotypes,
including epilepsy, schizophrenia, and drug and alcohol
abuse (Chen et al. 2002; Stogmann et al. 2002; Ventriglia
et al. 2002; Fagergren et al. 2003; Nomura et al. 2006; Xuei
et al. 2006).

The evolutionary history of the regulatory region of
PDYN is also intriguing as it shows a pattern of positive
selection in the human lineage as compared with other
nonhuman primates (Rockman et al. 2005) and shows ev-
idence of positive selection favoring different PDYN regu-
latory alleles in different human populations (Rockman
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et al. 2005). PDYN falls within a region of elevated FST be-
tween human populations, suggesting that the cis-regula-
tory region has been subject to different selection pressures
among human populations. Selection driving differentia-
tion between populations should also decrease variation
within a given population. To address this, Rockman et al.
(2005) also examined whether the microsatellite nearest
the PDYN promoter 68-bp element (discussed below as
MSAT(�2745)) exhibits the predicted signatures of selec-
tion. They found a significant reduction in heterozygosity
and repeat-number variance in a number of populations.
Biologically, regulation of PDYNmay be a target for balanc-
ing selection due to its physiological role in modulating re-
sponses to several psychoactive substances and its known
associations with protection against cocaine dependence
or abuse (Chen et al. 2002) and with neurological disease
states (Stogmann et al. 2002; Ventriglia et al. 2002). The
signatures of selection suggest that variation in the repeat
region has an impact on fitness. The question then is
whether other variation in this regulatory region is impor-
tant for function.

An ;3-kb region encompassing the 5# untranslated
region (UTR) and 5# flanking sequence is sufficient to drive
inducible expression of PDYN in neuroblastoma cells in vitro
(Rockman et al. 2005). Although the 68-bp repeat is the
most conspicuous component of genetic variation within
this region, several other closely linked polymorphisms
are also common within human populations (table 1). Be-
cause studies testing the effects of the 68-bp repeat on gene
expression in a hybrid murine cell line (Zimprich et al. 2000)
and in human brain regions (Cirulli and Goldstein 2007;
Nikoshkov et al. 2008) have reached differing conclusions,
we hypothesized that some of these other polymorphisms
influence PDYN transcription, with potential consequences
for traits associated with this gene.

In order to explore the functional consequences of
a wider range of variation segregating within the 3-kb

cis-regulatory region of PDYN, we assayed transcription
using two approaches: in vivo measurements of allelic im-
balance in four brain regions from 23 individuals using py-
rosequencing and in vitro measurements of luciferase
reporter expression driven by 19 natural haplotypes in
two neuroblastoma cell lines. In order to assess the impact
of specific variants on expression, we partitioned genetic
effects using both standard multiple regression and a re-
gression-tree approach. These statistical analyses allowed
us to explore the functional consequences of two kinds
of interactions that are rarely studied in regulatory sequen-
ces: interactions among multiple cis variants and interac-
tions between cis variants and the differentiated state of
cells. Our results indicate that variants within this 3-kb re-
gion are involved in both kinds of interactions, resulting in
a complex relationship between segregating genetic varia-
tion within a population and gene expression traits. We
also see some evidence of sex-specific effects on regulatory
variants. These complex dynamics will likely differ between
populations with additional segregating variants, highlight-
ing the need to examine natural variation when dissecting
regulatory function. These findings, together with those
from a handful of other studies (Horan et al. 2003; Tao et al.
2006; Ayroles et al. 2009; Warner et al. 2009), suggest that
cis-by-cis, cis-by-sex, and cis-by-cell type interactions may
be more common within regulatory regions than is gener-
ally appreciated.

Materials and Methods

Genotyping and Allele-Specific In Vivo Assays
Brain tissue was obtained through the Kathleen Price Bryan
Alzheimer’s DiseaseBrainBankatDukeUniversity. Postmor-
tem tissue samples were from the same brain regions as
those described in Cirulli and Goldstein (2007). Although
all of the samples included in this study were derived from
individuals self-identified as being of European descent, it

Table 1. The cis-Regulatory Polymorphisms of PDYN Analyzed in This Study.a

Identification Polymorphism PDYN Position Chromosome Position

SNP(22746) SNP C/T 22746 1925448
MSAT(22745) Microsat 18, 19, 21, 23 22745 1925447–1925413
SNP(22357) SNP C/A 22357 1925059
SNP(22343) SNP A/T 22343 1925045
SNP(22116) SNP G/C 22116 1924818
SNP(22081)^^ SNP T/C 22081 1924783
SNP(21754)^^ SNP C/T 21754 1924456
SNP(21647) SNP C/T 21647 1924349
68-bp Repeat 1 Repeat 1 21454 1924156–1924089
68-bp Repeat 2 Repeat 2 21386 1924088–1924021
68-bp Repeat 3 Repeat 3 21318 1924020–1923953
68-bp Repeat 4 Repeat 4 Not annotated Not present
SNP(21148)^^ SNP T/C 21148 1923850
SNP(2977) SNP T/G 2977 1923679
MSAT(2362) Microsat 7, 9 2362 1923064–1923047
SNP(2156) SNP G/A 2156 1922858
TSS 1 1922702

a For each polymorphism, the following information is listed: the identifier, character states of the polymorphism, the distance 5# from the transcriptional start site, and the
position on chromosomal locations are based on human genome NCBI 36.2. Positions that are not annotated are external to the three copies of the 68-bp repeat in the
references sequence. Known from a single haplotype (Rockman et al. 2005) but not used in this study.
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is important to note that the specific individuals included
in the in vivo and in vitro analyses comprise distinct groups
of individuals.The individuals includedcomprised14females
and 10 males (supplementary table S3, Supplementary Ma-
terial online). Genotypes of the regulatory single nucleotide
polymorphisms (SNPs) in the individuals included in the
in vivo assays were obtained through polymerase chain re-
action (PCR) amplification using the high-fidelity polymer-
ase Phusion (Finnzymes, Espoo, Finland) and then were
directly bidirectionally sequenced (supplementary table
S3, Supplementary Material online). Themicrosatellite gen-
otypes were obtained by sizing PCR-amplified DNA frag-
ments with an incorporated 5# fluorescent-labeled primer
on anABI 3700 automated capillary sequencer (Applied Bio-
systems, Foster City, CA). Marker genotypes were assigned
using the programGenotyper (Applied Biosystems). Pyrose-
quencing primers were designed around one reporter SNP
(rs910080T/C) to analyze allele-specific expression. Al-
lele-specific expression was performed one to three times,
with the majority of samples being represented by 2. Each
run consisted of three replicates of each cDNA sample.
The raw data obtained from pyrosequencing and real-time
PCR were controlled for quality before being analyzed as
in Cirulli and Goldstein (2007). If the peak heights for both
alleles of the SNP were less than 30, the data were not
used. In some cases, peak heights slightly lower than 30
were allowed as long as the alternate allele measured high-
er. In this instance, samples with lower intensity peak
heights were carefully inspected by hand for consistency
with other replicate results. Allelic ratios were determined
by dividing the score of one allele of the SNP by the
score of the other allele. The average allelic ratio of the
gDNA for a sample was then determined. To normalize
the data, cDNA allelic ratios were divided by the sample’s
average gDNA ratio for each run. Standard deviations
between sample replicates greater than 0.5 were dis-
carded. The average of all normalized cDNA ratios from
all replicates were averaged for one ratio per tissue for
each sample.

For each tissue (frontal cortex, occipital cortex, cerebel-
lum, and temporal cortex), both a regression tree analysis

and a multiple regression analysis of the magnitude of
allelic imbalance were performed. Specifically, the base-2
logarithm of the average (over technical replicates), nor-
malized (relative to gDNA) ratio of the level of the
lower-expressed reporter allele to the level of the higher-
expressed reporter allele was analyzed. Thus, all the ratios
were less than one (hence all the logarithms were negative):
The smaller the ratio (and the logarithm), the greater the
imbalance. The regression tree analyses were carried out in
R (R Development Core Team 2005), and the multiple re-
gression analyses were done in Excel. The regression tree
analysis is described in detail below. Genotypes are listed
in supplementary table S3, Supplementary Material online,
and were coded as 0 for homozygosity and 1 for heterozy-
gosity, and the intercept was set to 0 (no heterozygosity
should imply no allelic imbalance).

Haplotype Phasing and the Effect of SNP(�156)
We were able to infer phase between SNP(�156) and the
reporter SNP rs910080 by analyzing the genotypes for 55
individuals in the Duke Brain Bank using the program
PHASE 2.1 (Stephens et al. 2001; Stephens and Scheet
2005). All phase inferred haplotypes had posterior proba-
bilities .0.96. Knowing which allele at SNP(�156), A or G,
was physically linked to each allele, C or T, at the reporter
SNP in each sampled individual heterozygous for SNP(�156)
enabled us to ascertain whether higher expression was
associated with A or G at SNP(�156). For these individuals,
the measured reporter T-to-C ratio was taken to be the A-
to-G or G-to-A ratio, according to the inferred haplotype of
the individual. The P values in table 2 are two-tailed P values
for Wilcoxon’s ranked-sum test, performed in JMP (SAS
Institute Inc.)

Cloning and Sequencing
Constructs were made from DNA received from anony-
mous genomic DNA from Austrian populations (Stogmann
et al. 2002). Constructs were made from a subset of the
haplotypes used in the analysis of Rockman et al. (2005)
(supplementary table S2, Supplementary Material online).
These particular haplotypes were selected to maximize the

Table 2. Multiple Regressions for PDYN In Vivo Expression.

Brain Region R2 Coefficient for SNP(2156)a Standard Error of Coefficient P Valueb

A. Multiple regressions of allelic imbalance on sequence features
Frontal cortex 0.88 20.38 0.1 0.0019*
Occipital cortex 0.87 20.55 0.13 0.001*
Cerebellum 0.72 20.32 0.16 0.06
Temporal cortex 0.86 20.51 0.13 0.0015*

Mean Standard Error of Mean P Value
B. Expression from haplotypes containing A versus G at SNP(2156)c

Frontal cortex 20.4 0.07 0.0002*
Occipital cortex 20.59 0.07 <0.0001*
Cerebellum 20.29 0.11 0.02
Temporal cortex 20.52 0.06 <0.0001*

a Partial regression coefficients are shown for SNP(2156) only, as no others were statistically significant.
b An asterisk indicates a P value < 0.01 from a two-tailed Wilcoxon ranked-sum test.
c Allelic imbalance specifically in relation to SNP(2156).
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number of cis-regulatory variants assayed from the larger
population of haplotypes in Rockman et al. (2005). The
3-kb PDYN cis-regulatory haplotypes were isolated through
PCR amplification using the high-fidelity polymerase Phu-
sion (Finnzymes, Espoo, Finland). Individual PCR-amplifica-
tion products were cloned into pGL3-basic luciferase
reporter vector using an Acc65I restriction site on the 5#
end and an NheI site incorporated into the primer on
the 3# end. Constructs were then prepared using the Wiz-
ard midi-prep kit (Promega, Madison, WI) and sequenced
against references from Rockman et al. (2005).

PDYN Reverse Transcription PCR
To verify that SH-SY5Y and IMR-32 cells naturally express
PDYN, fragments of cDNA were reverse transcribed and
then PCR amplified with primers jumping between exons
3 and 4. RNA was extracted from SH-SY5Y and IMR-32 cells
with an Aurum total RNA extraction kit (Bio-Rad, Hercules,
CA). The cDNA single-strand synthesis used a high capacity
cDNA archive kit (Applied Biosystems). PCRs were then
completed with the absolute qPCR SYBR kit (Abgene, Ep-
som, United Kingdom). In both cell types, the expected am-
plicon was observed at 94 bp (supplementary fig. S1,
Supplementary Material online). These results confirm that
these cells are appropriate models for PDYN expression and
that the expression readings observed were not an artifact
of experimental conditions.

Transfection, Cell Culture, and Expression
Measurement
SH-SY5Y cells were cultured in a 1:1 mixture of Ham’s F12K
and MEME (ATCC, Manassas, VA) with 1 mM sodium py-
ruvate and 0.1 mM nonessential amino acids (Gibco BRL,
Gaithersburg, MD), supplemented with 10% fetal bovine
serum (HyClone, Logan, UT). IMR-32 cells were cultured in
MEME (Sigma–Aldrich Corp St Louis, MO) with 1 mM
sodium pyruvate and 0.1 mM nonessential amino acids
(Gibco BRL, supplemented with 10% FBS (ATCC). Both
cell lines were acquired from ATCC and maintained at
37 �C and 5% CO2. Transfections were performed in
24-well plates. SH-SY5Y and IMR-32 cells were seeded
at 8 � 105 cells/ml at a volume of 500 ll. Cells were trans-
fected 24 h after seeding using Lipofectamine 2000 (Invi-
trogen, Carlsbad, CA). The transfection mixture used was
2 ll Lipofectamine 2000, 100 ll OPTI-MEM, 700-ng re-
porter construct, and 200 ng of Renilla-TK as a coreporter.
The Renilla construct served as an internal control for
well-to-well variation. For the control wells, 427 ng of
empty pGL3basic was added to the transfection mixture,
which is the molar equivalent of the other constructs.
Forty-two hours after transfection, cells were lysed with
100 ll of passive lysis buffer (Promega) for 20 min. Lysates
were read in the automated 96-well Veritas Luminomiter
(Turner Biosystems, Sunnyvale, CA) with autoinjection fol-
lowing procedures obtained from Promega, using a 2-s
delay and 10-s read time. To control for variation, we com-
pleted all experiments on 3 separate days and on each day
transfected six separate wells for each construct.

In Vitro Expression Analysis
The complex and stochastic nature of gene expression
makes it difficult to fully control all factors that affect tran-
scription even in vitro. In order to separate biological signal
from experimental noise, we fitted a mixed-model analysis
of variance (ANOVA) to our measurements. Specifically, for
each cell type and day, we first computed the ratio between
the luciferase reporter and Renilla coreporter expression for
each well. We then subtracted the arithmetic mean over six
replicates of measured expression from a promoterless
pGL3 vector, from each value of measured expression from
a vector containing a PDYN cis-regulatory haplotype, to re-
move background levels of expression from the analysis.
We then computed the base-2 logarithm of the difference.
For each cell type, we then used restricted maximum likeli-
hood to fit the ‘‘normalization model’’

yijk 5 l þ Hi þ D j þ ðHDÞij þ eijk; ð1Þ

where yijk is the logarithmically transformed, background-sub-
tracted value of measured expression for haplotype i (1–19),
day j (1–3), and well k (1–6), l is the overall mean, Hi is the
fixed main effect of haplotype i, Dj is the random main effect
of day j, (HD)ij is the random interaction effect of haplotype i
and day j, and eijk is the residual. This was done in R (R De-
velopment Core Team 2005), and our code is available on re-
quest. This model, which resembles models commonly used in
the analysis of microarray data (Wolfinger et al. 2001), ac-
counts for not only purely technical, well-to-well variation
but also systematic effects of day arising from, for example,
day-to-day variation in the cell cultures. R2 was calculated
for fixed and random effects estimated from three separate
expression data sets for PDYN expression. The R2 for fixed
and random effects, respectively, was 0.32 and 0.21 in the
IMR-32 cell line and 0.25 and 0.43 in the SH-SH5Y cell lines.
The total R2 was 0.58 in the IMR-32 cell line and 0.68 in the SH-
SY5Y cell line. The fits indicate that random effects are sub-
stantial, accounting for 21% and 43% of expression variation in
the two cell types. For each cell type, we used the Tukey–
Kramer procedure to assess the significance of each pairwise
difference between estimated Hi‘s. The estimated Hi‘s consti-
tute our best measures of the typical expression from the hap-
lotypes (supplementary table S1, Supplementary Material
online). The Hi‘s were also used as input to the regression-tree
analyses described in the next section.

The multiple regression analyses of the in vitro data were
done in Excel. SNP(�2746) and SNP(�2343) are in com-
plete linkage disequilibrium (LD) among our haplotypes
and hence were treated as one sequence feature.

Regression-Tree Analyses of In Vitro and In Vivo
Data
We also carried out regression-tree analyses on both the in
vivo and in vitro data. The first phase of regression tree
building finds a tree accounting for as much variation
among fiducial expression levels as possible; this tree has
a leaf node for each haplotype. Such a tree is generally over-
fitted, in that the relevance of a predictor (here a polymor-
phism) to the expression variation seen in our experimental
data is not necessarily representative of its relevance to ex-
pression in the later splits of the regression tree. To correct
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for this, we crossvalidated the trees by using subsets of each
data set and evaluated their performance on the remain-
der. Such crossvalidation, repeated for many subsets of the
measured cases, is the standard approach to pruning a re-
gression tree so as to avoid overfitting (Breiman et al. 1984).
The second phase of tree building prunes the tree to the
size whose mean-squared prediction error over the cross-
validation subsets is minimal. For example, for the in vitro
analysis, we had 19 unique haplotypes. For this data set, we
used 19-fold leave-one-out crossvalidation, which we favor
over the widely used 10-fold crossvalidation. Higher-fold
crossvalidation is more accurate but more computationally
expensive (Breiman et al. 1984, p. 78); however, our data set
is sufficiently small that the computational burden was not
problematic. Crossvalidation involved each of the 19 sub-
sets of our haplotypes consisting of all but one haplotype.
For each subset and for each size from 1 to 18 leaf nodes,
the regression tree of that size was computed and used to
predict expression from the excluded haplotype, and the
squared prediction error was tabulated. The tree for all
19 haplotypes was pruned to the size whose mean-squared
prediction error over the subsets was minimal. Although
pruning criteria favoring simpler trees are often used in re-
gression tree analyses, the minimum-error criterion is ap-
propriate for exploratory and descriptive studies such as
the present one. (Among the motivations for alternative
pruning criteria are fluctuations arising in 10-fold and other
nonexhaustive crossvalidation schemes, which do not arise
in our scheme.) This same pruning procedure was also used
on the in vivo data. We performed all these computations
using the R system for statistical analyses (R Development
Core Team 2005). Our R code is available on request.

Binding-Site Analysis
The haplotype sequences were submitted to AliBaba 2.1
(Grabe 2002) and P-Match (Chekmenev et al. 2005). Addi-
tionally, Motif Locator (Thijs et al. 2002) was used for
SNP(�156), as the other programs had no predictions
for this motif. In all programs, the default parameters were
used. Transcription factors that were predicted to bind di-
rectly to the polymorphism in the PDYN cis-regulatory re-
gion were then recorded. Transcription factor–binding
sites were classified as predicting the transcription factor
would invariantly bind to a motif for both all polymor-
phism states, bind only to ancestral polymorphism states,
or bind only at the derived polymorphic state, with ances-
tral states classified relative to the Great Apes.

Results

Identifying Additional Sequence Features
Underlying Variation in PDYN Expression
To begin investigating the functional impact of cis-regula-
tory haplotype variation on PDYN expression, we measured
luciferase expression driven by 19 naturally occurring PDYN
haplotypes of European origin (Rockman et al. 2005) in two
independently derived neuroblastoma cell lines, SH-SY5Y
and IMR-32. Both of these cell lines endogenously express

PDYN constitutively (supplementary fig. S1, Supplementary
Material online) and are therefore appropriate for func-
tional tests of its regulatory region. Additionally, in a previ-
ous study, we found functional variation in a regulatory
region that differed between these cell lines (Warner
et al. 2009), suggesting differences in trans factors that in-
fluence gene expression. The haplotypes we examined
comprise a subset of the common variation in haplotypes
described earlier (Rockman et al. 2005). Although previous
studies have emphasized the impact of the 68-bp repeat on
transcription (Zimprich et al. 2000; Nikoshkov et al. 2008),
we found no consistent relationship between repeat num-
ber and expression in either cell line (fig. 1). However, there
are clearly repeatable and statistically significant differences
in expression between constructs. These results suggest
that 68-bp repeat number is not the only sequence feature
that influences PDYN expression. We therefore extended
our analysis to examine the functional consequences of
the other polymorphic sites on expression level, using both
in vivo and in vitro functional assays.

Variants Correlated with Expression Changes In
Vivo
In vivo assays of gene expression in humans cannot easily
control for genetic background and physiological status
but nonetheless provide the most biologically relevant
measures of expression difference. In order to measure
the functional effects of polymorphisms within the 3-kb
5# flanking region of PDYN on in vivo expression, we mea-
sured allele-specific transcript abundance in four brain
regions. Allele-specific measurements of transcript abun-
dance can be used to assay the effects of cis-acting variation
(Yan et al. 2002; Pastinen and Hudson 2004; Wittkopp et al.
2004). These assays utilize a polymorphism in a transcript
(the reporter SNP) as a marker for each of the allele states
(the putative functional variants). If variants near the re-
porter SNP affect expression differently on the two chro-
mosomes, there will be an allelic imbalance, or departure
from 1:1 ratio, in the abundance of transcripts bearing the
twoalleles of the reporter SNP. Because both regulatory hap-
lotypes are exposed to the samecomplement of trans-acting
factors, allelic imbalance is most plausibly the result of var-
iation incis (Knight2004).Variantswithin5#flankingregions,
such as the regions examined in this study, are unlikely to
influence posttranscriptional events such as alternative
splicing or message stability; thus, an association between
a5#variant andallelic imbalance indicates that it, or avariant
in LD with it, influences transcription.

We used pyrosequencing to measure allelic imbalance of
PDYN transcripts within four brain regions: frontal cortex,
temporal cortex, occipital cortex, and cerebellum. These
same regions were previously assayed from some of the
same individuals and tested for imbalance associated with
the 68-bp repeat alone (Cirulli and Goldstein 2007). Here,
we analyzed an expanded sample set, both in terms of the
number of individuals (23 individuals, all of whom were
heterozygous at the reporter SNP) and of possible associ-
ated polymorphisms.
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Using multiple regression analyses, we found that het-
erozygosity for one sequence feature, the A/G SNP at po-
sition �156 relative to the transcription start site, is clearly
and consistently associated with allelic imbalance (table 2).
The association is strongest for occipital cortex, and tempo-
ral cortex, weaker for frontal cortex, andweakest for cerebel-
lum(table 2A andB). Interestingly, 68-bp repeatnumberwas
not associated with allelic imbalance in any of these four
brain regions, suggesting that this variantmight not be func-
tionally important in the regions we examined.

We were able to determine haplotype phasing between
SNP(�156) and the reporter SNP (rs910080T/C) using
PHASE 2.1 (Stephens et al. 2001; Stephens and Scheet
2005). In order to determine which allelic state at
SNP(�156) is associated with higher or lower expression,
we first asked whether there was a trend in the ratio of ex-
pression in SNP(�156) heterozygotes. Only SNP(�156)
was tested, because it was implicated by the multiple re-
gression analysis and inferring phasing of more distal se-
quence features and the reporter SNP would be less
certain. Expression is significantly lower from haplotypes
with A at SNP(�156) in three of the brain regions sur-
veyed (table 2B). The remaining brain region, cerebellum,
shows a similar, but a less robust trend. Clearly, the pres-
ence of an A at SNP(�156) is associated with lower ex-
pression in vivo. A limitation of in vivo assays is that we
cannot experimentally verify whether this change in ex-
pression is caused by SNP(�156) itself or a polymorphism
in LD with it. However, it seems unlikely that the other

known variants in the region (table 1) are causal, given
their failure to exhibit strong associations with allelic im-
balance in the multiple regression analyses (table 2) as well
as in a regression-tree analysis (discussed below).

We also tested whether any of the polymorphisms
showed sex-specific functional effects. For the female indi-
viduals, SNP(�156) drops out of the analyses, because all
the female samples are A/G at this SNP. The unsigned linear
regression analyses for frontal cortex show significant asso-
ciations with the 68-bp repeat (0.014) and MSAT(�2745)
(P 5 0.018). The 68-bp repeat is also significant in the cer-
ebellum (P 5 0.025). We also found that there is an SNP
within repeat 1 that shows up as significant in the frontal
and occipital cortex, as well as the cerebellum (P 5 0.023,
0.007, and 0.040, respectively) in females. For the male indi-
viduals, the data sets are almost too small to analyze, but the
linear regressionsnowshownosignificant features, including
SNP(�156). These data are suggestive of sex-specific inter-
actions in PDYN regulation, but as the sample sizes are very
small, these results should be interpreted cautiously.

Variants Correlated with Expression Changes In
Vitro
In vitro assays provide a valuable complement to in vivo
measurements, because different haplotypes can be tested
in the same genetic background and under nearly uniform
physiological conditions. Although a transformed cell line
growing in culture is somewhat less natural than in vivo
samples, in vitro assays provide substantially greater power

FIG. 1. Fitted expression levels driven by PDYN cis-regulatory haplotypes in two neuroblastoma cell lines. For ease of comparison, construct
expression has been normalized so that the lowest expressed construct is equal to zero. All other constructs examined are then some value
greater than zero. Constructs are organized vertically by repeat number. Error bars represent standard errors of fitted construct effects. The
haplotype identifiers are listed, see supplementary table S2, Supplementary Material online, for haplotype-sequence states.
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detect genetic effects by controlling for two of the most
likely confounding effects. We therefore returned to the
19 natural haplotypes of the PDYN cis-regulatory region
described earlier and sought to accurately identify specific
sequence features that influence expression level.

Our analytical strategy was as follows (see Materials and
Methods for details): First, we fitted a mixed-model AN-
OVA (the normalization model) to our measurements
for each cell type, in order to obtain a fiducial expression
level for each haplotype in that cell type (supplementary
table S1, Supplementary Material online). Next, for each cell
type, we performed a multiple regression of the fiducial ex-
pression level on haplotype sequence features, coding SNPs
as binary (0 vs. 1) variables. The only variant we did not
consider is a SNP that lies within the 68-bp repeat and
varies within each of them, because the number of permu-
tations of SNP by repeat number is simply too large relative
to the number of haplotypes tested.

The multiple regression analysis for expression in SH-
SY5Y cells is statistically significant overall (F-statistic P 5

0.0066), indicating an effect of genotype on expression level
(fig. 3A). Five sequence features are statistically significant
individually (t-statistic P from 0.002 to 0.019) (table 3).
For expression in IMR-32 cells, the regression is marginally
significant overall (F-statistic P5 0.053), and two sequence
features are marginally significant individually (t-statistic
P5 0.074 and 0.097) (table 3). Both of the features weakly
implicated in IMR-32 cells are strongly implicated in SH-
SY5Y cells. Although copy number of the 68-bp repeat
is implicated in SH-SY5Y cells, it is only one of several fea-
tures implicated and does not have the strongest support.
Thus, these analyses suggest that PDYN regulation is similar
but not identical in these two cell types and that the 68-bp
repeat is a relevant but not a dominant factor.

Regression-Tree Analyses of the In Vivo Assays
Although multiple regression analysis is the conventional
statistical approach to testing for an association between
a specific genetic variant and expression level, this ap-
proach is not suited to a situation where multiple variants
interact nonadditively. Such interactions are likely to be
common within cis-regulatory regions, given that many
transcription factors bind cooperatively to DNA and to
each other (reviewed in Lemon and Tjian 2000). Although
interaction terms can be added to regression models, the
number of potential pairwise interactions is typically large;
in our case, this number exceeds the number of haplotypes
or individuals we had available for analysis. A second lim-
itation of regression analysis is that it assumes additive de-
pendence on sequence features. However, there is no
particular reason to expect additive effects, or even mono-
tonic effects when more than two alleles are present, as in
microsatellites.

Therefore, we carried out regression-tree analyses as a
complement to multiple regression analyses. We con-
structed a regression tree of fiducial expression level on
haplotype sequence features for each cell type or brain re-
gion. The goal of a regression-tree analysis is to identify a

branching sequence of if–then conditions, represented by
nodes in a tree, that accurately predict a response variable
using observed values of predictor variables, where the pre-
dictors may be subject to complicated interdependencies
(Breiman et al. 1984). Unlike multiple regression analyses,
regression-tree analyses do not assess statistical significance
of predictors, nor of the splits they govern. Instead, the em-
phasis is on predictive accuracy, as demonstrated by cross-
validation. Attractive qualities of regression-tree analysis
include its modest assumptions (e.g., it assumes nothing
about the probability distribution of the response given
the predictors) and interpretive simplicity. Here, the re-
sponse is expression in a given cell type driven by a hap-
lotype (after accounting for random variation via the
normalization model), and the predictors are sequence fea-
tures of the haplotype.

We began by revisiting the allelic imbalance results,
which assay in vivo expression (fig. 2). For a given cell type,
the sequence feature that is the strongest predictor of ex-
pression is the first split in the tree, and subsequent splits
are the next strongest, and so on. For each split in figure 2,
the subtree to the right (red) represents haplotypes yield-
ing higher expression, whereas the subtree to the left (blue)
represents haplotypes yielding lower expression. The fol-
lowing information is included in each box: the name of
a sequence feature, the state of the sequence feature,
the average deviation (on a base-2 logarithmic scale) of
expression for haplotypes having the given state of the se-
quence feature from average expression for all haplotypes,
and the number of haplotypes having the given state of the
sequence feature. Each split is annotated with the percent-
age of expression variation (sum of squared deviations from
mean) it accounts for. As in the multiple regression anal-
yses, SNP(�156) was the feature most strongly implicated

Table 3. Multiple Regression of Haplotype Sequence Features on
Fiducial Expression In Vitro.

Sequence Feature Coefficient
Standard of
Coefficient P Valuea

SH-SY5Y
SNP 2746/SNP 22343 21.85 0.49 0.004**
MSAT 22745 0.32 0.19 0.13
SNP 22357 0.31 0.3 0.32
SNP 22116 22.36 0.82 0.018**
SNP 22081 0.25 0.3 0.42
68-bp Repeat count 0.22 0.07 0.016**
SNP 2977 20.04 0.34 0.92
MSAT 2362 21.1 0.25 0.002**
SNP 2156 1.8 0.49 0.005**

IMR-32
SNP 22746/SNP 22343 20.7 0.44 0.14
MSAT 22745 0.04 0.17 0.83
SNP -2357 20.11 0.27 0.7
SNP 22116 20.44 0.73 0.56
SNP 22081 20.05 0.27 0.87
68-bp Repeat count 0.1 0.07 0.15
SNP 2977 0 0.31 1
MSAT 2362 20.45 0.22 0.073*
SNP 2156 0.81 0.44 0.097*

a One asterisk indicates a P value 0.05> P < 0.01 and two indicate P < 0.05.
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as affecting expression level (fig. 2A and B). The same two
brain regions, occipital cortex and temporal cortex, showed
the strongest support for affects of SNP(�156) on allelic
imbalance in both multiple regression and regression tree
analyses (compare table 2 and fig. 2). For the sex-specific
analysis, SNP(�156) remains significant in males, but all fe-
males are heterozygous at this SNP, so it cannot be analyzed.
For the females, the only nontrivial tree in seen in occipital
cortex for the SNP in repeat one. The 68-bp repeat was not
associated with allelic imbalance in any of the four brain re-
gions. Thus, SNP(�156) stands out as the variant most
strongly associated with expression level by two different
methods of analysis and in the same two brain regions.

Regression-Tree Analyses of the In Vitro Assays
Next, we analyzed reporter gene results, which assay effects
on expression in vitro. As expected, more variants are im-
plicated by the in vitro than the in vivo measurements
(compare fig. 2 and fig. 3). The regression trees for the
SH-SY5Y cell line (fig. 3A) indicate that the microsatellite
2,745-bp upstream of the transcription start site is the most
important factor in explaining differences in expression be-
tween haplotypes. The presence of 18, 19, or 21 copies of
the dinucleotide (GT)n at MSAT(�2745) within a given
haplotype leads to higher expression, whereas with 23 re-
peat expression was lower. For those haplotypes that had
21 or fewer repeats of the microsatellite, the presence of
three or four copies of the 68-bp repeat was associated with
higher expression than one or two copies, consistent with
results from previous studies (Zimprich et al. 2000; Nikosh-
kov et al. 2008). For those haplotypes containing one or
two copies of the 68-bp repeat, a second microsatellite,
MSAT(�362), was correlated with expression differences.
Again, fewer repeats was correlated with higher expres-
sion. The fourth variant implicated as affecting expression

is SNP(�2746), which is physically adjacent to the most
predictive feature, MSAT(�2745).

The regression trees for the IMR-32 cell type (fig. 3B) also
showed that the most important predictor of differences in
expression between haplotypes is the number of repeats in
MSAT(�2745). The 68-bp repeat number is again the sec-
ond-bestpredictorofexpression,withthosehaplotypescon-
taining three or four copies showing higher expression than
those with one or two copies (fig. 3B). Next, MSAT(�2745)
is further associated with expression differences; haplo-
types with 21 repeats have higher expression than haplo-
types with 18 or 19 repeats. Finally, the 68-bp repeat
appears again on the tree, with the two-repeat haplotype
showing higher expression than the one-repeat haplotype,
although this result is based on only two haplotypes.

In these trees, splits nearer the top tend to account for
larger percentages of the expression variation among haplo-
types.Althoughregression-treeanalysisdoesnotassignPval-
ues to predictors (as multiple regression analysis does), the
percentage of variation accounted for by all splits involv-
ing a predictor quantifies the importance of the predictor.
Thus, our in vitro data strongly implicate MSAT(�2745)
and the 68-bp repeat, which, respectively, are involved
in the first- and second-level splits in every tree and ac-
count for 62.9% and 18.7% of the expression variation on
the average in these analyses.

In SH-SY5Y cells, all but one of the sequence features im-
plicatedby regression tree analysis are also implicatedbymul-
tiple regression analysis. The exception, MSAT(�2745), is
instructive. Ignoring other features, the relationship between
expression level and repeat count at MSAT(�2745) is not
monotonic: Haplotypes containing 19 or 21 repeats are
associated with higher expression than those containing
18 or 23 repeats. In general, such a relationship with
one predictor can arise through correlations among pre-
dictors, but this does not appear to be the case here.
MSAT(�2745) is strongly correlated (magnitude of corre-
lation coefficient greater than 0.5, when SNPs are coded as
binary variables) with two other features, SNP(�2746)/
SNP(�2343) (these two SNPs are in complete LD among
our haplotypes, so we analyze them as one feature) and
SNP(�2116). Among haplotypes with C/A at SNP(�2746)/
SNP(�2343), the relationship with MSAT(�2745) remains
nonmonotonic, and although no equally informative re-
striction with respect to SNP(�2116) exists, haplotypes
with G at SNP(�2116) include both the highest- and
the lowest-expressing haplotypes in SH-SY5Y cells, with
21 and 23 repeats at MSAT(�2745), respectively. Because
the statistical significance of SNP(�2116) in our multiple
regression analysis arises from the latter two haplotypes
and is not predictive in the regression trees, we have
not included it in our set of implicated variants. Thus, al-
though it is impossible to be certain without making and
measuring haplotypes varying solely at MSAT(�2745), our
data suggest that the relationship between expression and
MSAT(�2745) may be genuinely nonmonotonic, at least in
some genetic backgrounds. Previous studies have shown
that polymorphisms in dinucleotide repeat number can

FIG. 2. Regression tree analyses of PDYN expression in vivo. (A,B)
Regression trees for PDYN in vivo expression. (A) Regression tree for
allelic imbalance in occipital cortex. (B) Regression tree for allelic
imbalance in temporal cortex.
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have a large impact on expression (Rothenburg et al. 2001)
and can effect expression in a nonmonotonic manner
(Chen et al. 2007). Given the apparent complexity of
the relationship, it is not surprising that multiple regres-
sion failed to recognize the importance of MSAT(�2745).
The relationship appears to be similarly complex for
IMR-32 cells, presumably contributing to the larger P val-
ues of multiple regression for this cell type. For both cell
types, the regression trees account for more variance with
fewer predictors than the multiple regressions (SH-SY5Y:
98% with four predictors vs. 86% with nine predictors;
IMR-32: 77% with two predictors vs. 76% with nine
predictors).

Binding-Site Analysis
In order to begin exploring the possible molecular bases for
the polymorphisms that influence expression, we scanned
each region containing one of the variants for putative

transcription factor–binding sites using a variety of bioin-
formatic tools (Grabe 2002; Thijs et al. 2002; Chekmenev
et al. 2005). Eleven of the 13 known variants contained
at least one possible transcription factor–binding site. Ad-
ditionally, nine of the 11 variants that had at least one
implicated binding site also showed that different tran-
scription factors were expected to bind the ancestral
and derived variants. However, the bioinformatic predic-
tions varied substantially depending on the program and
parameters used.

MSAT(�2745), the variant associated with the largest
effects in vitro, and MSAT(�362) do not have any pre-
dicted transcription factor–binding sites that vary between
repeat state. Within the 68-bp repeat, three potential in-
teractions were found between potential binding proteins.
In addition, one of these interactions was lost when the an-
cestral repeat internal SNP is replaced with the derived
SNP. Previous work by Zimprich et al. (2000) confirmed

FIG. 3. Regression trees for PDYN in vitro expression. (A,B) Regression trees follow the same format as in figure 2. (A) Regression trees for
expression in SH-SY5Y cells. (B) Regression trees for expression in IMR-32 cells.
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a biochemical interaction between the transcription factor
AP-1 and the 68-bp repeat region, which is one of the
putative factors that was predicted bioinformatically.
Within the 68-bp repeat, the transcription factors ER
and SP1 are also both predicted to bind. These proteins
are known to interact with each other, enhancing SP1
binding (Sun et al. 1998). In addition, ER is known to in-
teract with GATA-1, which was found to have a putative
binding site only in repeats containing the ancestral SNP.
GATA-1 is also known to interact with SP1 (Fischer et al.
1993) and GATA-1 binding is predicted to be lost in re-
peats with the derived mutation. The same interaction
between GATA-1 and SP1 may also occur between
SNP(�2116) and SNP(�2081), where GATA-1 is only im-
plicated as being able to bind with the derived mutation
at SNP(�2116). AliBaba and P-Match do not predict bind-
ing sites at SNP(�156), but other prediction algorithms,
Motif Locator and Motif Scanner (Thijs et al. 2002) predict
both an AP-1 and MEIS-1 site for SNP(�156)A and not for
SNP(�156)G. Note, however, that binding-site identifica-
tion based on sequence alone generally produces substan-
tial rates of false positives and false negatives (Tompa et al.
2005), so these results must be interpreted cautiously.

Discussion

Multiple Segregating Variants in cis Influence
PDYN Transcription
We used both in vivo and in vitro assays to search for func-
tional variants within a 3-kb region 5# of PDYN that affect
its expression. The results from both multiple regression
and regression-tree analyses implicate five segregating var-
iants in transcriptional regulation: one previously examined
in several association studies (Chen et al. 2002; Stogmann
et al. 2002; Ventriglia et al. 2002; Ray et al. 2005; Nomura
et al. 2006; Nikoshkov et al. 2008) and molecular analyses
(Zimprich et al. 2000), a second in association studies
(Geijer et al. 1997; Xuei et al. 2006; Yuferov et al. 2009),
and three additional variants not previously recognized
as functional in their impact on gene expression (table
1). Yuferov et al. (2009) recently determined that three
SNPs in perfect LD within the 3# UTR also affect expression.
Thus, at least six common functional variants have been
identified that influence PDYN expression to date.

The complex expression profile of PDYN makes under-
standing the consequences of genetic variation within its
cis-regulatory region challenging. PDYN is expressed in
many areas of the brain (Telkov et al. 1998; Hurd 2002; Ni-
koshkov et al. 2005), as well as in other tissues, including the
spinal cord (Ji et al. 2002), immune cells (Sun et al. 2006),
and both testes and ovaries (Civelli et al. 1985; Kaynard
et al. 1992). Genes with complex expression profiles may
be more likely to harbor multiple functional genetic var-
iants than those with simple expression profiles for two
reasons: First, their cis-regulatory regions are likely to be
more extensive and therefore provide a larger mutational
target. Second, their protein products are more likely to be
involved in multiple biological processes, increasing the

likelihood of balancing selection among diverse functional
demands. PDYN meets both criteria, with a moderately ex-
tensive cis-regulatory region (Carrion et al. 1999; Zimprich
et al. 2000). The six segregating variants that affect PDYN
expression (table 1) may therefore be atypical of human
genes as a whole but not particularly unusual for genes with
complex expression profiles.

There is alsoevidenceofbalancing selectionamonghuman
populations (Rockman et al. 2005). Balancing selection can
maintain advantageous genetic diversity in populations
and, therefore, maintain phenotypic variation. Selection
apparently drove independent increases in the frequency
of the two- and three-repeat alleles in different populations
(Rockman et al. 2005). There is also evidence that
MSAT(�2745) is underpositive selectionwithinpopulations,
asshownbyreducedvariationatthismicrosatellitewithincer-
tain populations. This reduction of variancewas originally in-
terpreted as being due to linkage with the 68-bp repeat
(Rockman et al. 2005) but could also be due to the inde-
pendent role of MSAT(�2745) now that it is known to
have a distinct functional consequence (this study).

Most genes with clear signatures of balancing selection in
humans are associated with immune function or protection
(e.g., Takahata et al. 1992; Peiper et al. 1995; Tournamille
et al. 1995; Verrelli et al. 2002; Tung et al. 2009). PDYN
provides an interesting example of balancing selection
on the regulation of a gene primarily involved in behav-
ioral phenotypes. PDYN products influence a number of
physiological phenotypes, such as reward, mood regula-
tion, stress response, and motor function (Drolet et al.
2001; Hauser et al. 2005). It is possible that the signatures
of recent selection at this locus have been driven by differ-
ences in the use of environmental opioids or different trig-
gers of endogenous opioids. Other neuropeptides have been
experimentallyshowntoalterbehaviors inotherspecies (Lim
et al. 2004; Saetre et al. 2004). Understanding the links be-
tween the polymorphisms in different populations affecting
PDYN expression and the fitness consequences of that
change poses a substantial, but important, challenge.

A prediction based on the results of this study is that
there are most likely additional functional polymorphisms
segregating in other populations and that between popu-
lations there may be differences in the relative importance
of a polymorphism on expression and on fitness. For exam-
ple, SNP(�156)A, here driving lower expression levels, is
maintained at a much higher allele frequency in the CEPH
(Utah residents with ancestry from northern and western
Europe) population than the other HapMap populations
(The International HapMap Consortium 2007). One prac-
tical impact is that future association studies of PDYN ex-
pression with disease phenotypes might benefit from deep
sequencing in this region and in multiple populations.
These data would allow for a more detailed understanding
of the important regulatory variants beyond the 68-bp re-
peat in population(s) of interest.

For a variety of reasons, the existence of additional func-
tional variants cannot be ruled out. We measured allelic
imbalance from just four regions of the adult central
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nervous system and examined the haplotypes in two cell
lines, a small subset of the full range of locations where
PDYN is expressed. In addition, we sampled a small fraction
of natural genetic variation: 23 individuals for the in vivo
assays and 19 haplotypes for the in vitro assays. Further-
more, we only assayed for effects on transcript abundance,
but additional variants could influence PDYN expression
through utilization of alternate transcription start sites
or alternative splicing downstream of the canonical tran-
scription start site (Telkov et al. 1998; Nikoshkov et al.
2005). (The reporter SNP used in the allelic imbalance as-
says in this study is present in all known PDYN alternative
transcripts and would therefore not identify variants influ-
encing these other regulatory processes.)

The number of cases where multiple functional variants
in cis have been shown to influence the expression of a
given gene is small but growing. Examples include HG1
(Horan et al. 2003), KRT1 (Tao et al. 2006), LCT (Enattah
et al. 2002; Tishkoff et al. 2007; Enattah et al. 2008), TH
(Warner et al. 2009), and PDYN (Zimprich et al. 2000). It
is worth noting, however, that relatively few studies have
explicitly searched for multiple variants that influence the
expression of a particular gene in humans. More cases need
to be examined in detail in order to understand what frac-
tion of human genes harbor multiple regulatory polymor-
phisms effecting transcription and how these regions are
being shaped by selection within populations.

Cell Type- and Sex-Specific Influences on the
Expression Phenotypes of Functional Variants
The spatial heterogeneity of PDYN expression within the
brain in particular (Telkov et al. 1998; Hurd 2002; Nikoshkov
et al. 2005) raises the possibility that functional variants
could affect restricted regions of its overall expression pro-
file, through interactions with trans-acting factors specific
to subsets of cell types. Because transcriptional activators
often differ among tissues, this may be a relatively com-
mon situation. Evidence for interactions with trans-acting
factors come from two kinds of comparisons: First, the
rankorderofhaplotypesdiffers amongcell lines in the in vitro
assays (fig. 1), as does the order of appearance of variants in
the regression tree (fig. 3A and B). Two of the variants,
MSAT(�362) and SNP(�2746), are implicated in SH-SY5Y
but not IMR-32 cells (fig. 3A). These differences are likely
driven by trans effects in the differentiated state of the
neuroblastoma cells and demonstrate the utility of exam-
ining regulatory regions of genes with pleiotropic effects in
multiple contexts.

Second, although PDYN is endogenously expressed in all
the brain regions that we assayed, expression-trait conse-
quences sometimes differed. For instance, SNP(�156) ex-
plains expression differences in vivo to different degrees
among different brain regions (table 2 and fig. 2). Because
these assays control for genetic background, these differen-
ces are driven by the differentiated state of the cells included
in the tissue samples, with SNP(�156), or a SNP in LDwith it,
playing a more or less important role, depending on the con-
text. Brain region–specific consequences of variants affecting

PDYN expression have previously been noted for the 68-bp
repeat (Nikoshkov et al. 2008) and SNPs in the 3# UTR (Yu-
ferov et al. 2009). Although we only found a statistically sig-
nificant correlation for the 68-bp variant in vivo in a subset of
samples and regions, we examined different regions of the
brain than Nikoshkov et al. (2008) examined, and that study
included relatively few female samples. Together, the results
of these three studies suggest that genetic differences in cis
affect interactions with trans-acting factors to alter PDYN
expression and that these interactions are mediated through
at least three different variants in cis, namely, the 68-bp re-
peat (Nikoshkov et al. 2008), SNP(�156) (this study), andone
ormore of three SNPs in the 3# UTR that are in perfect LD
(Yuferov et al. 2009). The only variant we found to affect
expression both in vivo and in vitro in all of the samples was
SNP(�156) (figs. 2 and 3). The fact that the other four var-
iants only showed measurable effects on expression in the
cell culture assays may reflect biological reality or the
greater sensitivity of in vitro assays to detect subtle func-
tional consequences.

As in vivo tissue samples are a complex mix of neuronal
and glial cell types and that cell types express distinct suites
of transcription factors, differences in expression conse-
quences among brain regions and cell types are perhaps
unsurprising. These results suggest that cellular environ-
ment influences the trait consequences of most of the
known variants that influence PDYN expression.

Our results are also suggestive of sex-specific interac-
tions with the regulatory variants of PDYN. There are
now a number of studies from model systems (Bhasin et al.
2008; e.g., Ayroles et al. 2009; and reviewed in Williams and
Carroll 2009) demonstrating significant effects of gender on
gene expression. There is also evidence of global sex-specific
changes in primate brain gene expression (Reinius et al.
2008) and in disease susceptibilities in humans (reviewed
in Ober et al. 2008). We see effects of the 68-bp repeat,
an SNP within the first repeat, and MSAT(�2745) in the
female individuals. The SNP within the repeat may be an-
other potential functional variant, although with our small
sample size, we cannot distinguish its effects from the effect
of repeat number. That we see significant interactionswith
the 68-bp repeat and MSAT(�2745) in the in vivo assays in
female individuals may mean that these variants play as or
more important a functional role as SNP(�156) in PDYN
expression in female frontal cortex and that those roles
may change between brain regions (here comparing be-
tween frontal cortex and cerebellum). Our sample sizes
for these analyses are very small, but these results are rea-
sonably suggestive of sex-specific effects of individual var-
iants. Neuropsychological association studies of PDYNmay
benefit from both combined and sex-specific association
analyses to understand variants involved in disease sus-
ceptibilities or progression.

Functional Variants Interact and Can Be
Suggestive of Nonadditive Interactions
With multiple variants affecting PDYN expression segregat-
ing in human populations, it becomes important to

Polymorphisms in cis Modulate PDYN Expression · doi:10.1093/molbev/msp276 MBE

475



understand whether their effects are additive or epistatic.
Regression-Tree analysis can be particularly informative in
understanding interactions between predictors, among
which there may be both causal (epistasis) and statistical
(LD) interdependencies. Our results provide several possi-
ble cases of epistatic interactions. For instance, 68-bp re-
peat number has different consequences for expression,
depending on repeat number of MSAT(�2745) (fig. 3A
and B). Similarly, the consequences of SNP(�2746) depend
on 68-bp repeat number (fig. 3A and B). Tracing through
the regression trees reveals more complex situations. For
example, fewer repeats of MSAT(�2745) are predictive
of higher expression on the first split in the IMR-32 tree
(fig. 3B), with the 68-bp repeat as the next split and then
another split on the state of MSAT(�2745). This back-and-
forth appearance on the same regression tree may be in-
dicative of interactions between different states of these
sequence features.

We also found a case where a multiallelic variant has
nonmonotonic effects on expression. Haplotypes contain-
ing 19 or 21 repeats of MSAT(�2745) are associated with
higher expression than those containing 18 or 23 repeats
when other features are not considered (see fig. 3A and
Results for details). This effect could arise through interac-
tions among sites or by repeat number affecting secondary
structure (Iglesias et al. 2004).

Because so few genes are known to harbor multiple
functional variants that influence transcription (see above),
it is perhaps not surprising that there are even fewer cases
where interactions among variants have been shown to be
either additive or epistatic in nature. Measuring these inter-
actions will generally require examiningmany haplotypes in
order to determine whether effects on expression are truly
causal or due to LD and whether real effects are additive
or epistatic. In vitro assays may be particularly useful in
this regard, as it is possible to engineer specific combina-
tions of variants not found naturally due to LD and test
their impact on expression level.

The 68-bp Repeat Influences PDYN Expression
The 68-bp repeat has been the focus of several prior studies
(Zimprich et al. 2000) and therefore merits special mention.
Our results suggest that the number of 68-bp repeats has
a functional impact, although this variant was not a robust
predictor of expression level, significant only in the two cell
lines and in frontal cortex and cerebellum in the female in
vivo analysis (table 3 and fig. 3). This finding falls some-
where between the results of Cirulli and Goldstein
(2007), who found no association, and those of Zimprich
et al. (2000) and Nikoshkov et al. (2008), who reported that
a higher repeat number may drive higher expression in vitro
and in vivo. These discrepancies could arise for a number of
biological or technical reasons. Cirulli and Goldstein (2007)
examined in vivo expression in fewer individuals than we ex-
amined. Nikoshkov et al. (2008) surveyed different brain re-
gions than we examined; their results may indicate
expression traits specific to particular brain regions rather
than an inconsistency among studies. Finally, Zimprich

et al. (2000) used a mouse/rat neuroblastoma/glioma hy-
brid cell line for transient transfection assays rather than
human cell lines, and their expression constructs incorpo-
rated smaller portion of the flanking region that did not
contain all of the functional variants examined here. This
last case highlights the importance of examining regula-
tory regions in a species-specific context, as there are
well-documented genome-wide changes in regulatory re-
gions between human and mouse (Odom et al. 2007; Wil-
son et al. 2008).

Consistent with previous studies (Zimprich et al. 2000;
Nikoshkov et al. 2008), our in vitro analyses found that hap-
lotypes containing three and four 68-bp repeats associate
with increased expression, whereas one and two repeats
were associated with lower expression (fig. 3). An increase
in expression with repeat number implies that the repeat
contains binding sites for transcriptional activators. Within
the repeat, there is an empirically documented binding site
for the transcriptional activator AP-1 (Zimprich et al. 2000),
whereas our bioinformatic screens (see Materials and
Methods) identified multiple additional possible transcrip-
tion factor–binding sites, almost all of which bind tran-
scriptional activators. Although not empirically tested
here, these results are compatible with the consistent find-
ing that higher repeat number leads to higher expression
(Zimprich et al. 2000; Nikoshkov et al. 2008). Collectively,
our analysis and previous studies (Zimprich et al. 2000;
Nikoshkov et al. 2008) provide evidence that variation in
68-bp repeat number is functionally significant. Evidence
that recent natural selection has altered repeat-number al-
lele frequencies among human populations (Rockman et al.
2005) further suggests that the resulting expression varia-
tion may have consequences for trait variation and fitness.

Conclusion
The impact of genetic variation on PDYN expression is un-
expectedly complex. At least six different variants are now
known to affect transcript abundance, all of which are seg-
regating in human populations. Some of these variants
show cell type–specific and sex–specific expression-trait
consequences, implying interactions with trans-acting fac-
tors that are themselves differentially expressed among cell
types. Segregating variants interact with each other to in-
fluence PDYN expression, in some cases nonadditively and,
in the case of some multiallelic variants, nonmonotonically.
The 68-bp repeat that has been the focus of several pre-
vious studies is not a consistent predictor of expression
level across all expression environments and may be impor-
tant in only a subset of the biological functions of PDYN;
other polymorphisms, most notably MSAT(�2745) and
SNP(�156), may be the primary drivers of expression var-
iation in some tissues. For future studies, it should be clear
that focusing exclusively on variation in the 68-bp repeat
will provide too simplistic of a view of PDYN cis-regulatory
function and trait associations and that other polymor-
phims may be playing important functional roles within
a given population. Whether PDYN is an outlier or a fairly
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typical example of the complex relationship between ge-
netic variation and expression trait consequences can only
be answered through detailed functional analyses of addi-
tional genes.

Supplementary Material
Supplementary tables S1–S3 and supplementary figure S1
are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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